

www.biologie-maroc.com

- · Cahiers de Biologie
- + Lexique
- Accessoires de Biologie

Visiter Biologie Maroc pour étudier et passer des QUIZ et QCM enligne et Télécharger TD, TP et Examens résolus.

- CV Lettres de motivation • Demandes...
- Offres d'emploi
- Offres de stage & PFE

EXERCICES sur SOLUTIONS AQUEUSES - pH

EXERCICE 1:

On dissout dans 500 cm^3 d'eau une masse $m_1 = 15,4$ g de sulfate de cuivre et une masse $m_2 = 31$ g de sulfate de fer III - Calculer les molarités des différents ions présents (la dissolution se fait sans variation appréciable du volume de la solution).

EXERCICE 2:.

Calculer le pH des solutions suivantes :

$[H_3O^+]$	10 ⁻¹ moL.L ⁻¹	1,5.10 ⁻² moL.L ⁻¹	$4,5.10^{-4} \text{ moL.L}^{-1}$
[HO ⁻]	$10^{-2} \text{ moL.L}^{-1}$	$3,2.10^{-5} \text{ moL.L}^{-1}$	10 ^{-4,3} moL.L ⁻¹

EXERCICE 3:

Calculer les concentrations molaires [H₃O⁺] et [HO ⁻] dans les solutions suivantes :

- 1.) pH = 1,3
- 2.) pH = 4,2
- 3.) pH = 1,3 3.) pH = 8,5
- 4.) pH = 11,6

EXERCICE 4:

On veut préparer une solution déci-molaire d'acide chlorhydrique. Quel volume v de chlorure d'hydrogène gazeux faut-il dissoudre dans $V = 150 \text{ cm}^3$ d'eau. (On se place dans les conditions normales de température et de pression : volume molaire des gaz $Vm = 22.4 \text{ L.mol}^{-1}$).

EXERCICE 5:

On dispose d'une solution acide à pH=2 . On veut préparer un volume $V_{\rm f}=5\ L$ de solution à pH=4.

- 1.) la solution de départ est-elle acide , basique ou neutre ?
- 2.) Calculer le rapport de dilution
- 3.) En déduire le volume V_i de solution initiale qu'il a fallu prendre

EXERCICE 6

On a dissous une masse $\,$ m d'hydroxyde de sodium (NaHO) dans un volume v=250~mL d'eau . Le pH

obtenu vaut pH = 11,2. Calculer m.

EXERCICE 7:

On obtient 1 L de solution en mélangeant :

- 0,2 L de solution décimolaire de chlorure de calcium (Ca²⁺ + 2Cl⁻)
- 0,4 L de solution décimolaire de chlorure de sodium (Na⁺ + Cl⁻)
- 0,2 L de solution centimolaire d'acide chlorhydrique ($H_3O^+ + Cl^-$)
- On complète à 1 L avec de l'eau.
- 1.) calculer les concentrations de tous les ions présents
- 2.) calculer le pH de cette solution.

EXERCICE 8:

Le thiosulfate de sodium cristallisé est un solide blanc de formule $Na_2S_2O_3$, $5\ H_2O$. On dissout une masse $m=4,96\ g$ de ce composé dans une fiole jaugée de 200 mL et on complète jusqu'au trait de jauge avec de l'eau distillée.

- 1.) Calculer la concentration de la solution ainsi préparée
- 2.) Ecrire l'équation de dissolution
- 3.) En déduire les concentrations des ions Na^+ et $S_2O_3^{2-}$ présents dans la solution.
- 4.) Avec la solution ainsi obtenue, on souhaite préparer 100 mL de solution de thiosulfate de sodium à $10^{-2} \text{ mol.L}^{-1}$. Décrire la méthode utilisée.

CORRECTION EXERCICES sur SOLUTIONS AQUEUSES - pH

EXERCICE 1:

1.) Pour un mélange, on écrit chaque dissolution séparément :

On peut maintenant écrire les concentrations molaires :

H₃O⁺, ni ions hydroxyde HO⁻.

2.) ELECTRONEUTRALITE:

$$[H_3O^+] + 2 \cdot [Cu^{2+}] + 3 \cdot [Fe^{3+}] = 10^{-7} + 2 \cdot 0,193 + 3 \cdot 0,31 = 1,316 \text{ mol.L}^{-1}$$
 $[HO^-] + 2 \cdot [SO_4^{2-}] = 10^{-7} + 2 \cdot 0,658 = 1,316 \text{ mol.L}^{-1}$ Remarque : les espèces H_3O^+ et HO^- sont *ultraminoritaires* .

EXERCICE 2: Calculer le pH des solutions suivantes :

$[H_3O^+]$	$10^{-1} \text{ moL.L}^{-1}$	$1,5.10^{-2} \text{ moL.L}^{-1}$	4,5.10 ⁻⁴ moL.L ⁻¹	
рН	1	1,82	3,35	
[HO ⁻]	10 ⁻² moL.L ⁻¹	3,2.10 ⁻⁵ moL.L ⁻¹	10 ^{-4,3} moL.L ⁻¹	
$[H_3O^+] = \frac{Ke}{[HO^-]}$	$10^{-12} \text{ moL.L}^{-1}$	$3,1.10^{-10} \text{ moL.L}^{-1}$	$10^{-9.7} \text{ moL.L}^{-1}$	
	12	9,51	9,7	

EXERCICE 3:

PH	1,3	4,2	8,5	11,6
$[H_3O^+]$ moL.L ⁻¹	5.10^{-2}	$6,3.10^{-5}$	3,2.10 ⁻⁹	$2,5.10^{-12}$
$[HO^{-}] = \frac{Ke}{[H_3O^{+}]} \text{ moL.L}^{-1}$	2.10^{-13}	$1,6.10^{-10}$	$3,1.10^{-6}$	4.10^{-3}

EXERCICE 4: On souligne les mots importants :

- décimolaire : $c = 0.1 \text{ moL.L}^{-1}$
- acide = H_3O^+ • acide chlorhydrique : chlorhydrique = Cl⁻ et
- chlorure d'hydrogène gazeux : molécule HCl
- dissolution: HC1 $H_3O^+ +$ $C1^{-}$ 1 mole 1 mole 1 mole n n

avec $n = c \cdot V = 0.1 \cdot 0.150 = 1.5 \cdot 10^{-2} \text{ mol}$

D'autre part pour HCl on peut écrire : $n = \frac{v}{Vm}$ \Rightarrow $v = n \cdot Vm$

Ce qui donne : $v = 1.5 \cdot 10^{-2} \cdot 22.4$ \Rightarrow v = 0.336 L

EXERCICE 5:

1.) On fait une dilution . Pour une dilution on raisonne toujours sur l'espèce MAJORITAIRE : Comme pH < 7, l'espèce majoritaire est l'ion H_3O^+ : la solution est donc ACIDE.

2.)

Solution initiale : $c_i = \begin{bmatrix} H_3O^+ \end{bmatrix} = 10^{-pH} = 10^{-2} \text{ moL.L}^{-1}$ $v_i = ?$ (à chercher) Solution finale : $c_f = \begin{bmatrix} H_3O^+ \end{bmatrix} = 10^{-pH} = 10^{-4} \text{ moL.L}^{-1}$ $v_f = 5 \text{ L}$

En ajoutant de l'eau, la quantité de matière ne change pas

3.) Volume initial:
$$v_i = \frac{c_f \cdot v_f}{c_i} = \frac{10^{-4} \cdot 5}{10^{-2}} \implies v_i = 5 \cdot 10^{-2} L = 50 \text{ mL}$$

EXERCICE 6: C'est la dissolution d'un composé ionique : les ions sont libérés

• pH =
$$11.2 \Rightarrow [H_3O^+] = 10^{-pH} = 10^{-11.2} = 6.31 \cdot 10^{-12} \text{ moL.L}^{-1}$$

•
$$n = c \cdot V = [HO^{-}] \cdot V = 1.6 \cdot 10^{-3} \cdot 0.250$$
 $\Rightarrow n = 3.96 \cdot 10^{-4} \text{ mol}$

• D'autre part
$$n = \frac{m}{M} \Rightarrow m = n \cdot M = 3,96 \cdot 10^{-4} \cdot 40 \Rightarrow m = 0,096 g$$

EXERCICE 7: Comme nous avons un mélange, nous analysons chaque solution séparément :

• 0.2 L de solution décimolaire de chlorure de calcium ($\text{Ca}^{2+} + 2\text{Cl}^-$) :

$$v_1 = 0.2 L$$
 $c_1 = 0.1 \text{ mol.} L^{-1}$ \Rightarrow $n_1 = c_1 \cdot v_1 = 2 \cdot 10^{-2} \text{ mol}$

• 0,4 L de solution décimolaire de chlorure de sodium (Na⁺ + Cl⁻)

$$v_2 = 0.4 L$$
 $c_2 = 0.1 \text{ mol.} L^{-1}$ \Rightarrow $n_2 = c_2 \cdot v_2 = 4 \cdot 10^{-2} \text{ mol}$

• 0.2 L de solution centimolaire d'acide chlorhydrique ($H_3O^+ + Cl^-$)

$$v_3 = 0.2 L$$
 $c_3 = 0.01 \text{ mol.} L^{-1}$ \Rightarrow $n_3 = c_3 \cdot v_3 = 0.2 \cdot 10^{-2} \text{ mol}$

• On complète à 1 L avec de l'eau :
$$[H_3O^+] = [HO^-] = 10^{-7} \text{ mol.L}^{-1}$$

$$v_4 = 0,2 \text{ L}$$

$$c_4 = 10^{-7} \text{ mol.L}^{-1}$$

$$\Rightarrow n_4 = c_4 \cdot v_4 = 0,2 \cdot 10^{-7} \text{ mol}$$

Remarque : n_4 est négligeable ; ce n'est plus le cas si le volume d'eau est très grand (quelques m^3) par rapport aux autres volumes .

1.) Concentrations de tous les ions présents : $V_{tot} = v_1 + v_2 + v_3 + v_4 = 1 L$

$$\left[\ Ca^{2+} \right] \ = \ \frac{n_1}{V_{tot}} \ = \ 2 \ . \ 10^{-2} \ mol. L^{-1}$$

$$[Na^+] = \frac{n_2}{V_{tot}} = 4 \cdot 10^{-2} \text{ mol.L}^{-1}$$

$$\left[\begin{array}{c} H_3O^+ \end{array} \right] \; = \; \frac{n_3 + \, n_4}{V_{tot}} \; = \; \frac{n_3}{V_{tot}} = \; 0,2 \; . \; 10^{-2} \; mol.L^{-1} \label{eq:Vtot}$$

$$[HO^{-}] = \frac{Ke}{[H_{3}O^{+}]} = 5 \cdot 10^{-12} \text{ mol.L}^{-1}$$

$$\left[\begin{array}{c} Cl^{-} \right] \ = \ \frac{2 \ n_{1} + n_{2} + n_{3}}{V_{tot}} \ = \ 8.2 \ . \ 10^{-2} \ mol. L^{-1}$$

2.) Calcul du pH de cette solution :

$$pH = -\log [H_3O^+] = -\log (0.2 \cdot 10^{-2}) \implies pH = 2.7$$

3.) Vérification de l'électroneutralité de la solution :

$$2 \cdot [Ca^{2+}] + [Na^{+}] + [H_3O^{+}] = 8.2 \cdot 10^{-2} \text{ mol.L}^{-1}$$

 $[HO^{-}] + [Cl^{-}] = 8.2 \cdot 10^{-2} \text{ mol.L}^{-1}$

EXERCICE 8:

1.)
$$n = \frac{m}{M} = \frac{4,96}{248.2} = 2 \cdot 10^{-2} \text{ mol} \implies c = \frac{n}{V} = \frac{2 \cdot 10^{-2}}{0.200} = 0,1 \text{ mol.L}^{-1}$$

2.) Dissolution de thiosulfate de sodium hydraté dans l'eau :

3.) Concentrations des ions :

$$[Na^+] = \frac{2 n}{V} = 0.2 \text{ mol.L}^{-1}$$
 et $[S_2O_3^{2-}] = \frac{n}{V} = 0.1 \text{ mol.L}^{-1}$

4.) On fait maintenant une dilution

Solution initiale: $c_i = 10^{-1} \text{ moL.L}^{-1}$ $v_i = ?$ (à chercher) Solution finale: $c_f = 10^{-2} \text{ moL.L}^{-1}$ $v_f = 100 \text{ mL}$

En ajoutant de l'eau, la quantité de matière ne change pas
$$\Rightarrow c_i \cdot v_i = c_f \cdot v_f \quad \Rightarrow \quad v_i = \frac{c_f \cdot v_f}{c_i} = \frac{10^{-2} \cdot 100}{10^{-1}} \quad \Rightarrow \quad v_i = 10 \text{ mL}$$

Description de la dilution : on prend un volume $v_i=10\ \text{mL}$ de la solution concentrée avec une pipette et on met cette solution dans un fiole jaugée de volume $v_f=100\ \text{mL}$. Puis on complète avec de l'eau jusqu'au trait de jauge.

30n Coura

LIENS UTILES

Visiter:

- I. https://biologie-maroc.com
 - Télécharger des cours, TD, TP et examens résolus (PDF Gratuit)
- 2. https://biologie-maroc.com/shop/
 - Acheter des cahiers personnalisés + Lexiques et notions.
 - Trouver des cadeaux et accessoires pour biologistes et géologues.
 - Trouver des bourses et des écoles privées
- 3. https://biologie-maroc.com/emploi/
- Télécharger des exemples des CV, lettres de motivation, demandes de ...
- Trouver des offres d'emploi et de stage

