
www.biologie-maroc.com

SCIENCES DE LA VIE

- + Lexique
- Accessoires de Biologie

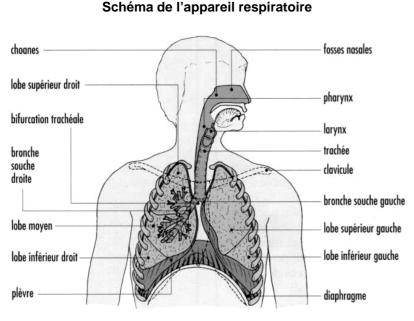
Visiter Biologie Maroc pour étudier et passer des QUIZ et QCM enligne et Télécharger TD, TP et Examens résolus.

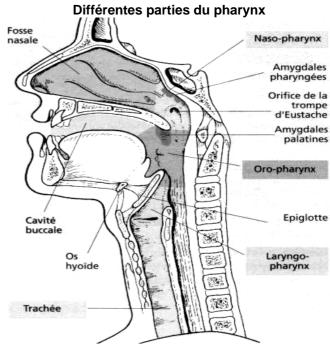
- CV Lettres de motivation • Demandes...
- Offres d'emploi
- Offres de stage & PFE

UE 2.2 C4 L'APPAREIL RESPIRATOIRE

- → Fonction principale:
 - ρ apport de l'O₂ à l'organisme,
 - ρ **élimination** du **CO**₂ de l'organisme.
- → Elle dépend de 4 mécanismes :
 - (1) Ventilation pulmonaire:
 - circulation de l'air dans les poumons ⇒ renouvellement continuel des gaz présents dans les alvéoles pulmonaires.
 - (2) Respiration externe:
 - échange gazeux entre le sang des capillaires pulmonaires et les cavités aériennes pulmonaires ⇒
 diffusion de l'O₂ vers le sang ⇒ diffusion du CO₂ vers les cavités aériennes.
 - (3) Transport des gaz respiratoires :
 - le système cardiovasculaire par l'intermédiaire du sang ⇒ acheminement de l'O₂ vers les cellules ⇒ acheminement du CO₂ vers les poumons.
 - (4) Respiration interne:
 - échange gazeux entre le sang des capillaires systémiques et les cellules ⇒ diffusion de l'O₂ vers les cellules ⇒ diffusion du CO₂ vers les capillaires.
- → Conséquence: Le système respiratoire et le système cardiovasculaire fonctionnent donc en étroite collaboration ; si l'un des 2 défaille ⇒ carence d'O₂ ⇒ mort des cellules.

I. ANATOMIE FONCTIONNELLE


- → Les organes du système respiratoire sont :
 - le nez et les fosses nasales,
 - e le pharynx,
 - ρ le larynx,
 - ρ la trachée,
 - ρ les bronches et les bronchioles,
 - ρ les poumons qui contiennent les alvéoles pulmonaires.
 - Sur le plan fonctionnel, le système respiratoire comprend :
 - ρ une zone de conduction :
 - constituée des voies respiratoires : les fosses nasales, le pharynx, le larynx, la trachée, les bronches.
 - orôles de ces voies :
 - acheminement de l'air à la zone respiratoire,
 - purification (= élimination des poussières et des microorganismes aériens),
 - humidification,
 - réchauffement, de l'air inspiré.
 - ρ une zone respiratoire :
 - constituée des structures microscopiques suivantes : les bronchioles, les conduits alvéolaires, les alvéoles pulmonaires.
 - rôle de ces structures : siège des échanges gazeux.


A. NEZ ET SINUS PARANASAUX

1. NEZ

- Fonctions du nez :
 - (1) Passage pour les gaz respiratoires.
 - (2) Humidification et réchauffement de l'air inspiré.
 - (3) Filtration de l'air inspiré ⇒ élimination des corps étrangers.
 - (4) Présence des récepteurs olfactifs.
- → Les cavités nasales sont séparées par le septum nasal.
- → L'arrière des fosses nasales communique avec le naso-pharynx (= rhinopharynx) par les choanes (= en forme d'entonnoirs).
- → Les parois latérales des cavités nasales possèdent 3 lames osseuses recourbées et recouvertes de la muqueuse nasale : le cornet nasal supérieur, le cornet nasal moyen et le cornet nasal inférieur.
 - ρ Chaque cornet délimite un sillon \rightarrow le **méat**.

→ Les vibrisses (= poils) situés au niveau des *narines filtrent* les *grosses particules* (= fibres, poussières, pollen) en suspension dans l'air inspiré.

- → La muqueuse nasale présente 2 régions :
 - La **région olfactive** (= région supérieure des cavités nasales) :
 - contient les récepteurs olfactifs.
 - La muqueuse respiratoire (= le reste de la muqueuse nasale) :
 - contient des glandes muqueuses :
 - sécrétion de *mucus* ⇒ *piégeage* des *microorganismes*, de la *poussière* et des *débris*.
 - contient des cellules ciliées :
 - création d'un courant d'air ⇒ acheminement du mucus contaminé vers la gorge (= oropharynx) ⇒ avalement, puis digestion de ce mucus par les sucs gastriques.

2. SINUS PARANASAUX

- → Les fosses nasales sont entourées de cavités → les sinus paranasaux, creusés dans les os frontal, sphénoïde, ethmoïde et maxillaire.
- → Fonctions des sinus paranasaux :
 - ρ allègement de la tête;
 - ρ **réchauffement** et **humidification** de **l'air** (= en association avec les fosses nasales);
 - ρ production aussi d'un mucus → cavités nasales.

B. PHARYNX

- → Le pharynx (= gorge) relie les cavités nasales et buccale au larynx et à l'œsophage ⇒ passage de l'air (→ larynx) et des aliments (→ œsophage).
- → Il se divise en <u>3 parties</u>:
 - ρ le **nasopharynx** (= **rhinopharynx** : partie nasale du pharynx),
 - ρ l'**oropharynx** (= partie buccale du pharynx),
 - ρ le **laryngopharynx** (= partie laryngée du pharynx).

1. NASOPHARYNX

- → Il est situé à l'arrière des fosses nasales, au-dessus de la cavité buccale ⇒ ne reçoit que de l'air.
- → Il communique avec les fosses nasales par l'intermédiaire des choanes.
 - ho Les cellules ciliées de son épithélium \Rightarrow propulsion du mucus amorcée par la muqueuse nasale.
 - ρ La partie supérieure de sa paroi contient les **tonsilles pharyngiennes** (= **végétations adénoïdes**) \Rightarrow *piégeage* et destruction des agents pathogènes de l'air (cf. le système lymphatique).
- → Durant la **déglutition**, le palais mou \uparrow et la luette (= uvule palatine) $\uparrow \Rightarrow$ fermeture du nasopharynx \Rightarrow les aliments ne peuvent pas atteindre la cavité nasale.
- → Les trompes d'Eustache (= trompes auditives)

Rôles : équilibration de la pression de l'air dans l'oreille moyenne avec la pression de l'air dans le milieu extérieur.

ρ s'ouvrent dans les parois latérales du nasopharynx.

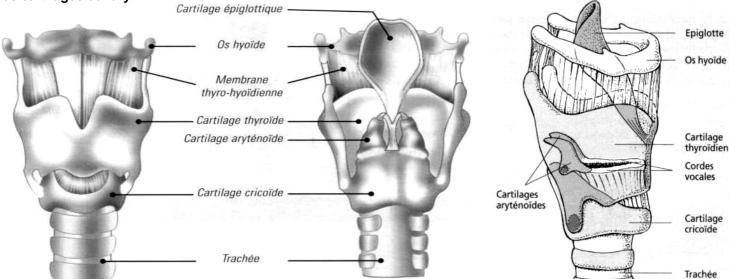
2. OROPHARYNX

- → Il est situé à l'arrière de la cavité orale:
 - ρ communique avec elle par une ouverture \rightarrow le **gosier**,
 - ρ s'étend du palais mou à l'épiglotte ;
 - → au niveau de la cavité buccale ⇒ reçoit l'air inspiré et les aliments avalés.
- → Sa muqueuse contient 3 tonsilles (= amygdales) :
 - ρ les 2 tonsilles palatines,
 - ρ la tonsille linguale.
 - ⇒ piégeage et destruction des agents pathogènes de l'air et d'origine alimentaire (cf. le système lymphatique).

3. LARYNGOPHARYNX

- → Il est situé au-dessous de l'oropharynx;
- ⇒ reçoit comme l'oropharynx l'air inspiré et les aliments avalés.
 - ρ s'étend de l'épiglotte au larynx.
 - ρ À ce niveau → divergence des voies respiratoires et des voies digestives : le laryngopharynx s'unit à la fois au larynx et à l'œsophage.
 - ρ Au cours de la **déglutition** \Rightarrow priorité des aliments \Rightarrow interruption temporaire du passage de l'air.

C. LARYNX


1. ANATOMIE

- → S'étend de la 4^{ème} à la 6^{ème} vertèbre cervicale.
 - ρ dans sa partie supérieure, relié à l'os hyoïde → s'ouvre dans le laryngopharynx,
 - ρ dans sa partie inférieure → communique avec la trachée.

→ Fonctions du larynx :

- (1) Conduction de l'air dans la trachée.
- (2) Aiguillage des aliments dans l'œsophage.
- (3) Phonation (= présence des cordes vocales).
- → La charpente du larynx est composée de <u>9 cartilages</u> (= reliés par des membranes et des ligaments) :
 - ho le cartilage thyroïde (= le plus grand ightarrow en fait, 2 lames de cartilage dont la fusion médiane constitue la proéminence laryngée ou pomme d'Adam : plus développée chez l'homme),
 - o le cartilage cricoïde (= en forme d'anneau),
 - ρ la paire de cartilages aryténoïdes,
 - ρ la paire de cartilages cunéiformes,
 - ρ la paire de cartilages corniculés,
 - ρ l'épiglotte (= cartilage élastique → partie supérieure située à l'arrière de la langue → sa tige est attachée à la face antérieure du cartilage thyroïde.

Les cartilages du larynx

→ Fonctionnement de l'épiglotte :

- ρ Durant l'inspiration :
 - ⇒ ouverture de l'entrée du larynx,

- ⇒ soulèvement de l'épiglotte.
- ρ Durant la déglutition :
 - ⇒ soulèvement du larynx,
 - ⇒ abaissement de l'épiglotte,
 - ⇒ fermeture du larynx,
 - ⇒ aiguillage des aliments et des liquides dans l'œsophage.
- p En cas de pénétration d'une substance autre que l'air dans le larynx ⇒ réflexe de toux (= réflexe tussigène) ⇒ expulsion de la substance.

Orifice glottique en position ouverte et

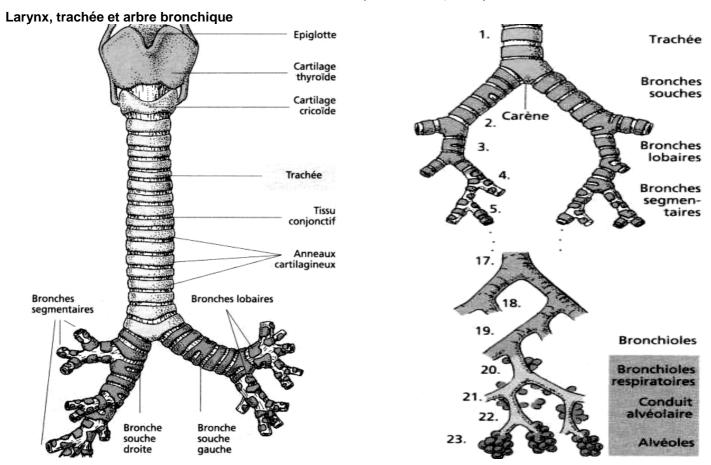
Carrefour des voies aérodigestives au niveau du pharynx

fermée Position respiratoire Voie digestive Voie aérienne intermédiaire Cordes Nasovocales pharynx Bande ventriculaire Orifice glot-Palais tique ouvert osseux Cartilage aryténoïde **Palais** mem-Position de phonation braneux 0 **Epiglotte** Orifice glot-**Esophage** tique fermé Bande ven-Langue triculaire Cartilage **Epiglotte** Trachée arvténoïde

- → Présence des **ligaments vocaux** ⇒ liaison des *cartilages aryténoïdes* au *cartilage thyroïde*.
 - ρ soutiennent 2 replis muqueux horizontaux = les **cordes vocales**.
 - ρ Les **cordes vocales** *vibrent* et *émettent des sons* sous l'impulsion de l'*air provenant des poumons*.
 - ρ L'ouverture où passe l'air entre les cordes vocales est appelée glotte.
- → Les cellules ciliées (= présentes en dessous des cordes vocales) ⇒ repoussent le mucus en direction opposée des poumons (= sens opposé à la poussée des cils du nasopharynx).

2. PHONATION

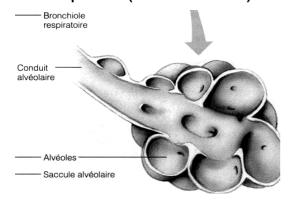
- C'est l'expulsion intermittente d'air accompagnée de l'ouverture et de la fermeture de la glotte.
 - ho Les variations de la longueur et de la tension des cordes vocales \Rightarrow la hauteur des sons :
 - Plus les cordes vocales sont tendues (= glotte faiblement ouverte)
 - ⇒ plus leurs *vibrations* sont *rapides*,
 - ⇒ plus le **son** est **aigu**.
 - Plus la glotte est largement ouverte ⇒ plus le son est grave.
 - La force avec laquelle l'air est expulsé ⇒ le volume de la voix :
 - Plus cette force est grande ⇒ plus les vibrations des cordes vocales sont importantes ⇒ plus le son est intense.

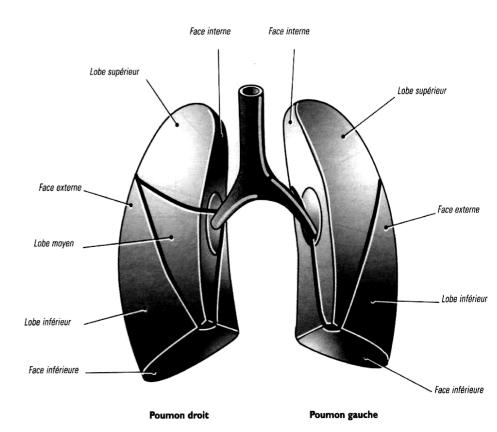

D. TRACHÉE

- → S'étend du larynx jusqu'au médiastin :
 - ρ Se termine au *milieu du thorax* \rightarrow donne naissance aux 2 bronches principales (= bronches souches).
 - ρ Est mobile et très flexible.
- → L'épithélium de sa muqueuse est constitué de cellules recouvertes de cils ⇒ propulsion continuelle du mucus chargé de poussières et de débris en direction du pharynx ⇒ protection des structures pulmonaires.
- → La périphérie de la trachée est renforcée par 16 à 20 anneaux incomplets de cartilage hyalin (= forme de fer à cheval).

E. ARBRE BRONCHIQUE

- 1. STRUCTURES DE LA ZONE DE CONDUCTION
- → Les bronches principales droite et gauche (= bronches souches) sont situées vers la vertèbre T₅:
 - À l'entrée dans les poumons, elles se subdivisent en bronches lobaires ou secondaires (= 3 à droite et 2 à gauche ⇒ 1 pour chaque lobe pulmonaire).
 - ρ Les bronches lobaires donnent naissance aux bronches segmentaires ou tertiaires
 - \Rightarrow émission de bronches de plus en plus petites : de $4^{\text{ème}}$ ordre, de $5^{\text{ème}}$ ordre, etc.
 - p II existe 23 ordres de conduit aériens dans les poumons ⇒ arbre bronchique ou respiratoire.
 - ρ Les **bronchioles** sont les conduit aériens de *diamètre* < 1 mm

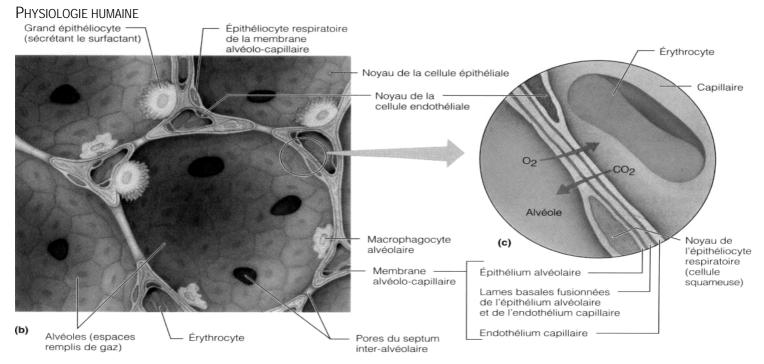

- o pénètrent dans les lobules pulmonaires,
- se subdivisent en bronchioles terminales (diamètre < 0,5 mm).



- → Les parois des bronches se modifient au cours des ramifications (= lors du passage d'un ordre de degré supérieur à un ordre de degré inférieur) :
 - (1) Modification du cartilage de soutien :
 - Les anneaux cartilagineux sont remplacés progressivement par des plaques irrégulières de cartilage.
 - (2) Accroissement de la proportion du muscle lisse :
 - Plus le diamètre des bronches ↓⇒ plus la proportion relative des muscles lisses dans les parois ↑⇒ les bronchioles sont entièrement entourées de muscle lisse circulaire.

Lobes pulmonaires

Zone respiratoire (saccule alvéolaire)



2. STRUCTURES DE LA ZONE RESPIRATOIRE

- → La zone respiratoire commence à l'endroit où les *bronchioles terminales* se jettent dans les **bronchioles** respiratoires :
 - ρ bronchioles les plus fines;
 - ρ se prolongent par les conduits alvéolaires;
 - ρ leurs parois sont constituées d'anneaux de muscle lisse, de fibres élastiques et de fibres collagènes ainsi que d'alvéoles pulmonaires isolées (= font saillie).
 - ρ ces conduits se terminent par des grappes d'alvéoles pulmonaires \rightarrow les saccules alvéolaires;
 - ρ chaque saccule est composé de plusieurs alvéoles pulmonaires.
 - ρ chaque alvéole pulmonaire est le siège des échanges gazeux.
 - a) Membrane alvéolo-capillaire
- → Les parois des alvéoles pulmonaires sont composées d'une couche unique de cellules appelées épithéliocytes respiratoires ou pneumocytes de type I.
 - ρ Une trame dense de capillaires pulmonaires recouvre les alvéoles.
 - Les parois des alvéoles et des capillaires associées forment la membrane alvéolo-capillaire → c'est la barrière air-sang.
 - Les échanges gazeux se produisent par diffusion simple à travers la membrane alvéolo-capillaire :
 - I'O₂ passe des alvéoles au sang,
 - le CO₂ diffuse du sang aux alvéoles.
- → Les <u>autres types cellulaires</u> présents dans le *parenchyme pulmonaire* sont :
 - ρ Les grands épithéliocytes ou pneumocytes de type II.
 - o disséminés entre les épithéliocytes respiratoires;
 - ∘ <u>rôle</u> : sécrétion d'un *surfactant liquide* tapissant la *surface interne de l'alvéole exposée à l'air alvéolaire* ⇒ **↑ l'efficacité des échanges gazeux**.
 - ρ Les macrophagocytes alvéolaires.
 - proviennent des capillaires sanguins;
 - <u>rôle</u>: sont des *phagocytes* très efficaces appelés *cellules à poussières* ⇒ les surfaces alvéolaires sont stériles.

Membrane alvéolo-capillaire

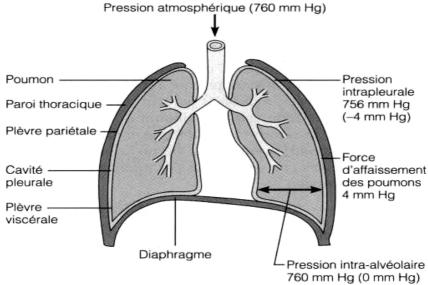
F. POUMONS ET PLÈVRE

- 1. ANATOMIE MACROSCOPIQUE
- Les **2 poumons** occupent la partie du thorax laissée libre par le médiastin (= espace abritant le cœur, les gros vaisseaux sanguins, les bronches, l'œsophage, etc.).
- → Les poumons reposent sur le diaphragme (= muscle squelettique).
- → Le hile des poumons correspond à une dépression (= sur la face interne des 2 poumons) où pénètrent :
 - ρ les vaisseaux sanguins :
 - de la circulation pulmonaire,
 - de la circulation systémique;
 - o des vaisseaux lymphatiques;
 - o des nerfs:
 - ρ les *bronches principales* (= *bronches souches*) : = les bronches des ordres inférieurs sont enfouies dans la masse des poumons.
- → Du fait de la position du cœur (= incliné vers la gauche) ⇒ les 2 poumons ont :
 - une forme un peu différente : la face interne du **poumon gauche** est creusée d'une **concavité** correspondant à la forme du **cœur** (= **incisure cardiaque** du **poumon gauche**).
 - o des dimensions un peu différentes : le **poumon gauche** est plus petit, en largeur, que le droit.
- → Les 2 poumons présentent un nombre de lobes différent :
 - ρ Le **poumon gauche** est divisé en <u>2 lobes</u> (= *supérieur* et *inférieur*) par une *scissure oblique*.
 - ρ Le poumon droit est divisé en 3 lobes (= supérieur, moyen et inférieur) par une scissure oblique et une scissure horizontale.
- → Les lobes pulmonaires se subdivisent eux-mêmes en **segments pulmonaires** possédant chacun leur *artère*, leur *veine* et leur *bronche segmentaire* propres :
 - o 10 segments dans le poumon droit,
 - ρ 8 segments dans le *poumon gauche*.
- → La plus petite subdivision du poumon est le lobule pulmonaire : chaque lobule est approvisionné par une bronchiole terminale de gros calibre et ses ramifications.
 - 2. VASCULARISATION ET INNERVATION DES POUMONS
- → Il existe 2 types de circulation sanguine dans les poumons qui ont des fonctions différentes :
 - (1) Circulation pulmonaire :
 - Elle correspond à la circulation fonctionnelle des poumons (= liée à la fonction des poumons).
 - Le sang pauvre en O_2 et riche en CO_2 (= sang "veineux" \rightarrow du point de vue de la circulation systémique) est transporté par les <u>2</u> artères pulmonaires :
 - cheminent parallèlement aux bronches principales;
 - à l'intérieur des poumons, se ramifient pour donner naissance aux réseaux capillaires pulmonaires.

ρ Le sang riche en O_2 et pauvre en CO_2 (= sang "artériel" \rightarrow du point de vue de la circulation systémique) est ramené au cœur par les <u>4</u> veines pulmonaires.

(2) Circulation bronchique:

- ρ Elle correspond à la **circulation nutritionnelle des poumons** (= apport d'O2 aux cellules pulmonaires et élimination du CO2 provenant du métabolisme de ces cellules).
- Les artères bronchiques acheminent le sang riche en O₂ et pauvre en CO₂ en provenance de la circulation systémique aux tissus pulmonaires.
 - o sortent de l'aorte et entrent dans les poumons au niveau du hile;
 - o présentent un volume sanguin bas et une pression sanguine élevée (vs dans les artères pulmonaires).
- ρ Les petites veines bronchiques drainent le sang pauvre en O₂ et riche en CO₂ hors des poumons (→ circulation systémique).
- → Les poumons sont innervés par :
 - p Des neurofibres parasympathiques (= principalement) ⇒ constriction des conduits aériens.
 - Des neurofibres sympathiques (= minoritairement) ⇒ dilatation des conduits aériens.
 - 3. PLÈVRE
- → C'est une séreuse composée de 2 feuillets :
 - ρ La plèvre pariétale tapisse la paroi thoracique.
 - La plèvre viscérale adhère à la surface externe des poumons.
- → Les 2 plèvres délimitent une mince cavité → la cavité pleurale.
 - ρ Contient le **liquide pleural** qui est *produit par les feuillets de la plèvre*.
 - ρ Rôles:
 - réduction de la friction des poumons contre la paroi thoracique pendant la respiration.
 - prévention de la séparation des 2 feuillets pleuraux: les feuillets de la plèvre glissent l'un contre l'autre, mais la tension superficielle du liquide pleural résiste fortement à leur séparation⇒ adhésion forte de chaque poumon à la paroi thoracique : il se dilate et se rétracte suivant les variations du volume de la cage thoracique (→↑ durant l'inspiration et ↓ durant l'expiration).


II. MÉCANIQUE DE LA RESPIRATION

- → La ventilation pulmonaire ou respiration comprend 2 phases :
 - ρ L'inspiration durant laquelle l'air entre dans les poumons,
 - ρ L'**expiration** durant laquelle les gaz sortent des poumons.

A. PRESSION DANS LA CAVITÉ THORACIQUE

- → Les pressions respiratoires sont exprimées par rapport à la pression atmosphérique.
 - ρ La **pression atmosphérique** est la *pression exercée par l'air entourant l'organisme*.
 - ρ Au niveau de la mer, la pression atmosphérique = 760 mm Hg (= pression exercée par une colonne de mercure de 760 mm de hauteur).
 - ρ Conséquences:
 - pression respiratoire de 4 mm Hg (→ valeur relative vis à vis de la pression atmosphérique) ⇒ < de 4 mm Hg à la pression atmosphérique ⇒ correspond à (760 4) mm Hg = 756 mm Hg (→ valeur absolue ou réelle).</p>
 - pression respiratoire > 0 \Rightarrow > à la pression atmosphérique \Rightarrow > 760 mm Hg.

Pression intra-alvéolaire et pression intrapleurale

1. PRESSION INTRA ALVÉOLAIRE

- → La pression intra-alvéolaire ou pression intra-pulmonaire :
 - ρ c'est la pression qui existe à l'*intérieur des alvéoles*;
 - p monte et descend suivant les 2 phases de la respiration;
 - revient toujours à une valeur = pression atmosphérique (= 760 mm Hg en v. absolue, = 0 mm Hg en v. relative).

2. PRESSION INTRA PLEURALE

- → La pression intra-pleurale :
 - ρ c'est la pression qui existe à l'*intérieur de la cavité pleurale*;
 - ρ fluctue aussi en fonction des 2 phases de la respiration;
 - ρ toujours < à la pression intra-alvéolaire d' \approx 4 mm Hg \Rightarrow pression intrapleurale = 756 mm Hg (= 4 mm Hg en valeur relative).
- → La pression trans-pulmonaire réalise la force nécessaire au maintien des poumons contre la paroi thoracique.

Pression trans-pulmonaire = pression intra-pulmonaire - pression intrapleurale = P_{alv} - P_{ip}

B. VENTILATION PULMONAIRE: INSPIRATION ET EXPIRATION

- → La ventilation pulmonaire ou respiration repose sur les variations de volume se produisant dans la cavité thoracique.
 - ρ Principe:
 - variations de volume $\Delta V \Rightarrow$ variations de pression ΔP ,
 - variations de pression △P ⇒ écoulement des gaz,
 - l'écoulement des gaz se fait de façon à égaliser la pression :

$\Delta V \Rightarrow \Delta P \Rightarrow E$ (= écoulement des gaz)

→ La relation entre la *pression* P et le *volume* des gaz V s'exprime par la loi des gaz parfaits (= loi de Mariotte) :

À température T constante : $P_1V_1 = P_2V_2$ avec P = pression du gaz (= mm Hg),

 $V = volume du gaz (= mm^3)$, les indices 1 et 2 = les conditions initiales et finales, respectivement.

Plus volume **V** est ↑ ⇒ plus les molécules de gaz sont éloignées les unes des autres,

 \Rightarrow plus *pression* **P** est \checkmark .

Plus volume \mathbf{V} est \mathbf{V} \Rightarrow plus les molécules de gaz sont comprimées,

 \Rightarrow plus *pression* **P** est \uparrow .

1. INSPIRATION

- → L'inspiration calme normale se fait sous l'action des muscles inspiratoires : le diaphragme et les muscles intercostaux externes.
- → Mécanisme de l'inspiration calme :
 - a) Action du diaphragme
- → La contraction du diaphragme ⇒ son abaissement et son aplatissement ⇒ ↑ de la hauteur de la cavité thoracique.
 - b) Action des muscles intercostaux
- → La contraction des muscles intercostaux externes ⇒ élévation de la cage thoracique ⇒ poussée vers l'avant du sternum ⇒ ↑ du diamètre du thorax
- → L' du volume de la cavité du thorax (= lors d'une inspiration calme normale) ≈ 500 mL = volume d'air entrant dans les poumons au cours d'une inspiration normale.
- 13) L'appareil respiratoire

- All	Chaînes des événements	e entraînant l'écoulement des gaz Variations de la profondeur et de la hauteur	Variations de la largeur
Inspiration	Contraction des muscles inspiratoires (descente du diaphragme; élévation de la cage thoracique) Augmentation du volume de la cavité thoracique Dilatation des poumons; augmentation du volume intra-alvéolaire Diminution de la pression intra-alvéolaire (–1 mm Hg) Écoulement des gaz dans les poumons dans le sens du gradient de pression jusqu'à l'atteinte d'une pression intra-alvéolaire de 0 (égale à la pression atmosphérique)	Élévation des côtes et saillie du thorax sous l'effet de la contraction des muscles intercostaux externes Contraction et descente du diaphragme	Contraction des muscles intercostaux externes
Expiration	Relâchement des muscles inspiratoires (élévation du diaphragme; descente de la cage thoracique due à la gravité) Diminution du volume de la cage thoracique Rétraction passive des poumons; diminution du volume intra-alvéolaire Augmentation de la pression intra-alvéolaire (+1 mm Hg) Écoulement des gaz hors des poumons dans le sens du gradient de pression jusqu'à l'atteinte d'une pression intra-alvéolaire de 0	Descente des côtes et du sternum sous l'effet du relâchement des muscles intercostaux externes Relâchement et élévation du diaphragme	Relâchement des muscles intercostaux externes

- Les inspirations profondes ou forcées : dues à l'exercice intense ou à certaines pneumopathies obstructives,
 - ⇒ activation des muscles accessoires de la respiration (= les scalènes, les sterno-cléido-mastoidiens et le petit pectoral),
 - ⇒ élévation accrue des côtes (= comparée à l'inspiration calme),
 - \Rightarrow \uparrow de la capacité du thorax.

2. EXPIRATION

- → L'expiration ou exhalation normale calme est un mécanisme passif reposant principalement, sur l'élasticité naturelle des poumons,
- → L'expiration forcée est un mécanisme actif provoquée par la contraction des muscles de la paroi abdominale (= obliques externe et interne de l'abdomen, transverse de l'abdomen).

- Cette contraction $\Rightarrow \uparrow$ la **pression intra-abdominale**,
 - ⇒ poussée des organes abdominaux contre le diaphragme,
 - ⇒ abaissement de la cage thoracique.

C. INFLUENCE DE LA TENSION SUPERFICIELLE SUR LA VENTILATION PULMONAIRE

- → La tension superficielle est un état qui se créé à la surface entre un gaz et un liquide
 - ⇒ attire davantage les molécules du liquide les unes vers les autres.
 - ⇒ résiste à toute force qui ↑ l'aire de la surface de séparation gaz-liquide.
- → H₂O est le principal composant du liquide qui recouvre les parois internes des alvéoles :
 - présente une très forte tension superficielle;
 - ramène constamment les alvéoles à leurs plus petites dimensions possibles;

- ρ si le liquide ne contenait que de l'H₂O pure ⇒ affaissement des alvéoles entre les respirations.
- → Présence de surfactant dans la pellicule de liquide alvéolaire :
 - complexe de lipides et de protéines (= 90% phospholipides, 10% glycoprotéines);
 - ρ production par les grands épithéliocytes;

→ Mode d'action du surfactant :

- ρ se dépose sur les cellules alvéolaires;
- ρ forme une monocouche de molécules orientées comme les molécules de phospholipides dans une membrane plasmique:
- ρ même type d'action que celui d'un **détergent** \Rightarrow réduit la cohésion des molécules d' H_2O entre elles, $\Rightarrow \downarrow$ de la **tension superficielle** du liquide alvéolaire, \Rightarrow moins d'énergie nécessaire pour dilater les poumons \Rightarrow **prévention de l'affaissement des alvéoles**.

D. VOLUMES RESPIRATOIRES ET ÉPREUVES FONCTIONNELLES RESPIRATOIRES

- 1. VOLUMES ET CAPACITÉS RESPIRATOIRES
- → Le spiromètre est un appareil qui permet de mesurer les différents volumes respiratoires.
- → Les combinaisons (= les sommes) des volumes respiratoires sont appelées capacités respiratoires : sont l'image de l'état respiratoire d'un individu.
 - a) Volumes respiratoires

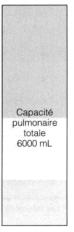
(i)Volume courant (VC)

- → C'est le volume d'air qui entre et qui sort des poumons à chaque respiration, dans une situation de repos.
 - ρ VC \approx 500 mL d'air.
- (ii) Volume de réserve inspiratoire (VRI)
- → C'est le volume d'air qui peut être en plus inspiré avec un effort, après une inspiration courante.
 - ρ VRI ≈ 2100 à 3200 mL d'air.
- (iii) Volume de réserve expiratoire (VRE)
- → C'est le volume d'air qui peut être **expiré** avec un **effort** après une expiration courante ⇒ ne peut être **expiré** que grâce à une expiration forcée.
 - ρ VRE \approx 1000 à 1200 mL d'air.
- (iv) Volume résiduel (VR)
- → C'est le volume d'air **restant** dans les poumons après une expiration forcée ⇒ ne peut être évacué même lors d'une expiration forcée.
 - γ VR ≈ 1200 mL d'air.
 - contribue à maintenir les alvéoles ouvertes ⇒ prévention de l'affaissement des poumons.
 - b) Capacités respiratoires


(i)Capacité inspiratoire (CI = VC + VRI)

- → C'est la quantité totale (= maximale) d'air pouvant être inspirée après une expiration courante (= normale).
 - ρ CI \approx 3600 mL.

- (ii) Capacité résiduelle fonctionnelle (CRF = VRE + VR)
- → C'est la quantité d'air restant dans les poumons après une expiration courante.
 - ρ CRF \approx 2400 mL.


- (iii) Capacité vitale (CV = VC + VRI +VRE)
- → C'est la quantité totale d'air échangeable ⇒ quantité maximale d'air pouvant être expirée après un effort inspiratoire maximal.
 - ρ CV ≈ 4800 mL.
 - o CV ≈80%xCPT.

- (iv) Capacité pulmonaire totale (CPT = VC + VRI + VRE + VR)
- → C'est la quantité maximale d'air contenue dans les poumons après un effort inspiratoire maximal : CPT ≈ 6000 mL.

2. ESPACE MORT ANATOMIQUE

→ C'est la partie du volume courant d'air VC qui remplit les conduits de la zone de conduction (= les bronches) et qui ne participe jamais aux échanges gazeux dans les alvéoles (= situation normale).

Volume mort anatomique \approx 150 mL d'air \Rightarrow (VC - volume mort anatomique) \approx (500 mL - 150 mL) \approx **350 mL** d'air seulement *participent à la ventilation alvéolaire*.

- 3. VENTILATION ALVÉOLAIRE (VA): FRÉQUENCE X (VC VOLUME MORT)
- → La ventilation alvéolaire (= VA) est plus précise que la ventilation -minute dans l'évaluation de l'efficacité respiratoire :
 - ρ C'est la fraction du volume d'air inspiré qui participe aux échanges gazeux.
 - ρ Prend en compte le volume d'air inutilisé dans les espaces morts.
 - ρ Indique la concentration de gaz frais dans les alvéoles à un moment donné.

Équation de la VA : VA = fréquence respiratoire x (VC - volume de l'espace mort) (mL/mn) (respirations/mn) (mL/respiration)

- Chez les sujets en bonne santé: VA = 12 respirations/mn x (500 150) mL/respiration = 4200 mL/mn.
- → L'↑ du volume de chaque inspiration (= VC) est plus efficace que l'↑ de la fréquence respiratoire pour l'amélioration de la ventilation alvéolaire et de l'échange gazeux car l'espace mort anatomique est constant chez un sujet donné.
 - Quand la respiration est rapide et superficielle ⇒ ↓ forte de la ventilation alvéolaire car la majeure partie de l'air inspiré n'atteint jamais les alvéoles pulmonaires.
 - ρ Plus le **VC** \checkmark \Rightarrow plus la **ventilation réelle tend vers 0**, quelle que soit la rapidité de la respiration.

Sujet	Volume courant, ml/respiration	x	Fréquence, respirations/min	-	Ventilation minute, ml/min	Ventilation de l'espace mort anatomique, ml/min	Ventilation alvéolaire ml/min
Α	150		40		6 000	150 x 40 = 6 000	0
В	500		12		6 000	150 x 12 = 1 800	4 200
С	1 000		6		6 000	150 x 6 = 900	5 100

III. ÉCHANGES GAZEUX

A. PROPRIETES DES GAZ

- 1. PRESSIONS PARTIELLES (LOI DE DALTON)
- → Selon la loi des pressions partielles de Dalton :
 - Pression totale exercée par un mélange de gaz = somme des pressions exercées par chacun des gaz constituants.
 - Pression partielle d'un gaz donné (= pression exercée par le gaz considéré) ≈ % du gaz dans le mélange.
- P_{atm} ≈ 760 mm Hg au niveau de la mer. L'air est un mélange de plusieurs gaz :

On a la <u>relation</u> suivante : Pression partielle d'un gaz = % du gaz dans le mélange x P_{atm}

- ρ Conséquence:
 - pression partielle de l' N_2 (= azote) $P_{N2} \approx 78,6\% \times 760 \text{ mm Hg} \approx 597 \text{ mm Hg}$;
 - pression partielle de l' O_2 (= oxygène) $P_{O2} \approx 21\% \times 760 \text{ mm Hg} \approx 159 \text{ mm Hg}$;
 - ∘ celle du CO_2 (= gaz carbonique) $P_{CO2} \approx 0.04\% \times 760 \text{ mm Hg} \approx 0.3 \text{ mm Hg}$;
 - ∘ celle du H_2O (= vapeur d'eau) $P_{H2O} \approx 0.46\% x 760 mm Hg \approx 3.7 mm Hg.$

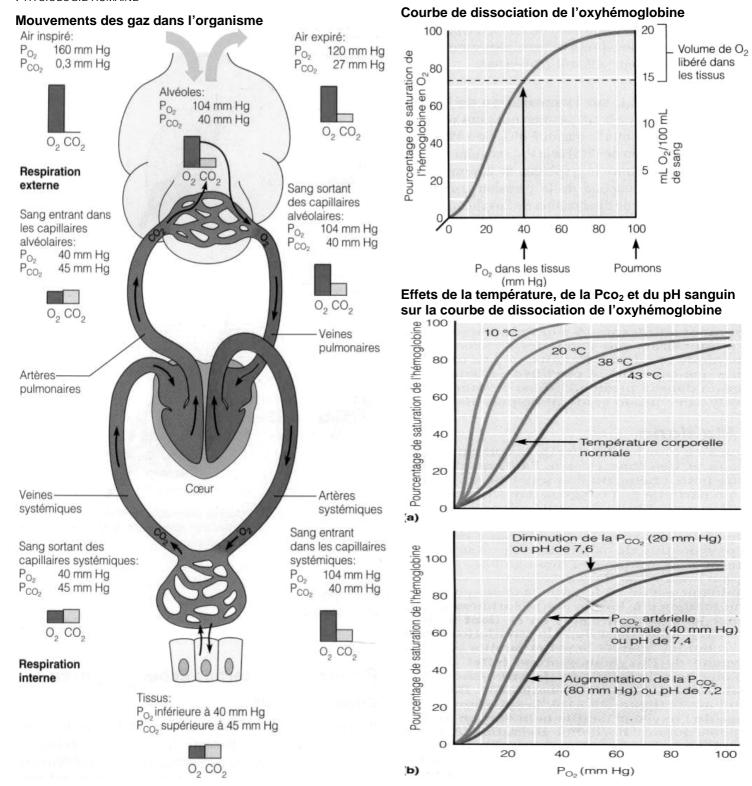
2. LOI DE HENRY

- → Selon cette loi:
 - ρ Plus un gaz donné est concentré dans le mélange gazeux ⇒ plus il se dissout en grande quantité dans le liquide.
 - Au point d'équilibre, les pressions partielles d'un gaz sont les mêmes dans les 2 phases (= gazeuse et liquide).
 - ρ Si pression partielle d'un gaz dans le liquide > celle du même gaz dans le mélange gazeux ⇒ une **partie des molécules de gaz dissoutes reviennent dans la phase gazeuse**.
 - Si pression partielle d'un gaz dans le liquide < celle du même gaz dans le mélange gazeux ⇒ des molécules de gaz de la phase gazeuse se dissolvent dans la phase liquide.</p>

B. COMPOSITION DU GAZ ALVÉOLAIRE

- → Les alvéoles contiennent plus de CO₂ et de vapeur d'H₂O, et moins d'O₂ que l'atmosphère. Ces différences s'expliquent par :
 - (1) Les échanges gazeux se produisant dans les poumons :
 - diffusion de l'O₂ des alvéoles au sang pulmonaire,
 - diffusion de CO₂ du sang pulmonaire vers les alvéoles.
 - (2) L'humidification de l'air qui s'effectue dans les zones de conduction $\Rightarrow \uparrow P_{H2O}$.
 - (3) Le **mélange des gaz alvéolaires** survenant à chaque respiration : entre le volume de gaz occupant l'espace mort anatomique et l'air qui entre dans les poumons.

C. ÉCHANGES GAZEUX ENTRE LE SANG, LES POUMONS ET LES TISSUS

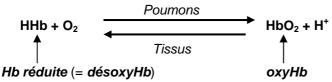

- On distingue 2 types de respiration :
 - ρ Respiration externe :
 - o dans les **poumons**, l'O₂ entre dans le sang et le CO₂ en sort.
 - Respiration interne:
 - au niveau des tissus, l'O₂ sort du sang pour pénétrer dans les cellules et le CO₂ entre dans le sang en provenance des mêmes cellules.
 - 1. ÉCHANGES GAZEUX DANS LES POUMONS
- → Durant la respiration externe :
 - Le sang rouge sombre (= pauvre en O₂ et riche en CO₂) prend une couleur écarlate (= sang riche en O₂ et pauvre en CO₂) au moment des échanges gazeux. Ce changement de couleur est dû à la fixation d'O₂ à l'hémoglobine (= Hb) dans les érythrocytes (= globules rouges GR ou hématies).
- → Facteurs influençant le mouvement d'O₂ et de CO₂ à travers la membrane alvéolo-capillaire :
 - a) Gradients de pression partielle et solubilités des gaz
- → P₀₂ ≈ 40 mm Hg dans le sang désoxygéné des artères pulmonaires,

P₀₂ ≈ 104 mm Hg dans les alvéoles,

- ⇒ le gradient de pression partielle est élevé (= 64 mm Hg),
- ⇒ diffusion rapide de l'O₂ des alvéoles au sang des capillaires pulmonaires,
- \Rightarrow établissement de l'équilibre à $P_{02} \approx 104$ mm Hg dans le sang capillaire pulmonaire.
- → P_{CO2} ≈ 45 mm Hg dans le sang désoxygéné des artères pulmonaires,

P_{CO2} ≈ 40 mm Hg dans les alvéoles,

- ⇒ le gradient de pression partielle est **bas** (= 5 mm Hg),
- ⇒ diffusion du CO₂ du sang des capillaires pulmonaires aux alvéoles,
- \Rightarrow établissement de l'équilibre à $P_{CO2} \approx 40 \text{ mm Hg}$ dans le sang capillaire pulmonaire.
- → CO₂ et O₂ sont échangés en quantités égales bien que le gradient de l'O₂ > gradient de CO₂ car la solubilité de l'O₂ ≈ 20 x plus petite que la solubilité du CO₂ dans le plasma et dans le liquide alvéolaire.
 - b) Aire consacrée aux échanges gazeux
- → Plus l'aire de la membrane alvéolo-capillaire est \uparrow , plus la quantité de gaz pouvant diffuser à travers elle est \uparrow . La somme des aires de l'ensemble des alvéoles \approx **140** m^2 chez un homme en bonne santé.
 - 2. ÉCHANGES GAZEUX DANS LES TISSUS
- → Les **gradients de pression partielle** sont *inversés par rapport à ceux des poumons* ⇒ *inversion du sens de diffusion des gaz* :
 - ρ Le **métabolisme** des cellules consomme de l'O₂ et produit du $CO_2 \Rightarrow$ passage de O₂ du sang artériel systémique ($P_{O2} = 100 \text{ mm Hg}$) aux tissus ($P_{O2} = 40 \text{ mm Hg}$) selon le **gradient de pression partielle**.
 - P_{CO2} dans le liquide interstitiel \approx 45 mm Hg \Rightarrow passage de CO_2 des tissus (P_{CO2} = 45 mm Hg) au sang des capillaires (P_{CO2} = 40 mm Hg) selon le **gradient de pression partielle**.
 - Conséquence: Le sang veineux étant issu des lits capillaires des tissus $\Rightarrow P_{02}$ dans le sang veineux systémique \approx 40 mm Hg et $\Rightarrow P_{C02}$ dans le sang veineux systémique \approx 45 mm Hg.


IV. TRANSPORT DES GAZ RESPIRATOIRES DANS LE SANG

A. TRANSPORT DE L'OXYGÈNE O2

→ L'O₂ est transporté dans le sang (= des poumons aux tissus) de 2 façons : Sous forme d'O₂ dissous dans le plasma (= faible solubilité dans le plasma) : 1,5 % de l'O₂ total transporté dans le sang. Sous forme d'oxyhémoglobine HbO₂ (= lié à l'Hb) dans les hématies : 98,5 % de l'O₂ total transporté dans le sang.

- 1. ASSOCIATION ET DISSOCIATION DE L'O₂ ET DE L'HÉMOGLOBINE
- → L'Hb est composée de :
 - ρ 4 chaînes polypeptidiques,
 - ρ 4 hèmes (= chacun lié à 1 chaîne polypeptidique),
 - 4 atomes de fer (= chacun lié à 1 hème) sous forme d'ion ferreux Fe²⁺ (= Fe II).

→ L'O₂ se lie aux atomes de Fer ⇒ 1 molécule d'Hb peut donc se combiner à 4 molécules d'O₂. L'équation de la liaison/ dissociation de l'O₂ s'écrit :

- ρ L'oxyHb est représentée sous la forme "HbO₂" qui est une convention d'écriture \Rightarrow dans la réalité l'Hb peut se lier à 1, 2, 3 ou 4 atomes d'O₂ \rightarrow HbO₂, HbO₄, HbO₆ ou HbO₈.
- Dans les 3 premiers cas, l'Hb est *partiellement saturée* et dans le 4^{ème} cas, elle est *entièrement saturée*.
- → La vitesse à laquelle l'Hb capte ou libère l'O₂ dépend des <u>facteurs suivants</u> : la pression partielle d'O₂, la pression partielle de CO₂, la température, le pH sanguin, la concentration de 2,3-DPG dans les hématies.
 - a) Influence de la Po₂ sur la saturation de l'Hémoglobine
- → Le graphe de la saturation de l'Hb en fonction de la Po₂ présente une allure en sigmoïde (= en forme de S) :
 - ρ La courbe de dissociation de l'HbO₂:
 - o montre une pente ↑ entre 10 et 50 mm Hg,
 - o forme un plateau entre 70 et 100 mm Hg.
- → Dans des conditions normales (P₀₂ = **100 mm Hg**, 104 mm Hg en théorie) :
 - ρ le sang artériel est saturé à 98 %,
 - ρ avec une teneur en oxygène ≈ 20 mL d'O₂ pour 100 mL de sang artériel (= 20 % par volume).
- → Au niveau des tissus (= consommation d'O₂) ≈ 5 mL d'O₂ pour 100 mL de sang sont libérés.
 - ρ Dans le **sang veineux**,
 - ⇒ taux de saturation de l'Hb passe à ≈ 75%,
 - \Rightarrow teneur en O₂ passe à \approx 15% par volume.
 - b) Influence de la température, du pH, de la Pco2 et du 2,3 DPG sur la saturation de l'hémoglobine
- → Le 2,3-DPG (= 2,3-diphosphoglycérate) est un composé spécifiquement produit par les hématies :
 - ρ à partir de la glycolyse,

 $CO_2 + H_2O$

- ρ se lie de manière réversible à l'Hb.
- → L' \uparrow de la température, de la P_{CO2} , de la concentration d'ions H^+ (= \downarrow du pH), de 2,3-DPG dans le sang,
 - ⇒ ✓ de l'affinité de l'Hb pour l'O₂,
 - ⇒ **déplacement** vers la **droite** de la courbe de dissociation de l'HbO₂,
 - \Rightarrow \uparrow de la dissociation de l'O₂ vis à vis de l'HbO₂.
- \rightarrow L' \uparrow de la température, de la P_{CO2} , de la concentration d'ions H^+ (= \downarrow du pH), de 2,3-DPG dans le sang :
 - ρ se produisent surtout dans les capillaires systémiques,
 - ρ au niveau desquels la **dissociation** de l' O_2 a lieu.
 - L'↑ locale de la température est produite par le métabolisme cellulaire.
 - L'↑ locale de la P_{CO2} correspond à la libération du CO₂ par le métabolisme des cellules.
 - La ↓ locale (= proximité immédiate des cellules) du pH est due à la libération d'ions H⁺ qui a pour origine l' ↑ du CO₂ selon la réaction suivante (= dans les hématies) :

__ HCO₃ + H⁺.

Anhydrase carbonique _____ H₂CO₃

L' effet Bohr correspond à la \checkmark de l'affinité de l'Hb pour l' O_2 due à la \checkmark locale du pH.

Le 2,3-DPG synthétisé par les hématies ⇒ la ↓ de l'affinité de l'Hb pour l'O₂, lorsqu'il se lie à celle-ci.

B. TRANSPORT DU GAZ CARBONIQUE CO₂

- → Au repos, les cellules produisent ≈ 200 mL/ mn de CO₂ que les poumons éliminent durant la même période.
- → Le CO₂ est transporté dans le sang (= des tissus aux poumons) de 3 façons :

Sous forme de CO₂ dissous dans le plasma.

∘ ≈ **7 à 8%** du CO₂ total.

Sous forme de carbhémoglobine HbCO₂ (= carbaminohémoglobine) dans les hématies.

- ∘ ≈ **20 à 30%** du CO₂ total.
- Le **CO₂ n'**entre **pas** en compétition avec l'O₂ pour la liaison à l'hème : au contraire, il s'associe à la globine.
- 2 facteurs influencent la liaison et la dissociation du CO₂:

La P_{CO2}:

- . le CO₂ se lie à l'Hb dans les tissus, où sa pression partielle est plus élevée que dans le sang,
- . le CO₂ se dissocie de l'Hb dans les poumons car sa pression partielle est plus faible dans l'air alvéolaire que dans le sang.

Le degré d'oxygénation de l'Hb : l'*Hb réduite* se combine plus facilement au CO₂ que l'*HbO*₂. Sous forme d'ions bicarbonate HCO₃ dans le *plasma*.

- ∘ ≈ 60 à 70% du CO₂ total.
- La réaction suivante se produit surtout dans les GR où elle est catalysée par une enzyme appelée anhydrase carbonique (= AC) :

CO₂ + H₂O gaz HCO₃ + H⁺ bicarbonate carbonique proton

- Les ions H⁺ libérés ↓ le pH cytoplasmique des GR
 - \Rightarrow effet Bohr : \downarrow de l'affinité de l'O₂ pour l'Hb,
 - ⇒ libération de l'O₂ au niveau des tissus,
 - ⇒ l'*HbO*₂ est alors transformée en *Hb réduite* (= HbH).
- Le CO₂ provenant du plasma (= origine : les tissus) est ainsi transformé en ions HCO₃ dans les GR, puis les ions bicarbonate diffusent rapidement des GR au plasma, qui les transporte aux poumons.
- Dans les **poumons**, les mécanismes sont inversés : la P_{CO2} passe de 45 à 40 mm Hg
 - \Rightarrow les ions HCO₃ réintègrent les *GR*,
 - \Rightarrow les ions HCO_3^- et H^+ s'unissent pour former du CO_2 (= sort des GR),
 - \Rightarrow le CO_2 ainsi formé, *celui libéré* par $HbCO_2$ et *celui présent* dans le *plasma diffuse* du *sang aux alvéoles* selon le *gradient de* P_{CO2} .

V. RÉGULATION DE LA RESPIRATION

A. MÉCANISMES NERVEUX DU RYTHME RESPIRATOIRE

- 1. CENTRES RESPIRATOIRES DU BULBE RACHIDIEN
- → La respiration dépend de l'activité de 2 noyaux présents dans le bulbe rachidien :
 - (1) GRD (= groupe respiratoire dorsal) :
 - C'est le centre inspiratoire : il régule le rythme respiratoire en agissant essentiellement sur l'inspiration.
 - Les influx nerveux qu'il émet stimulent :
 - le diaphragme (= via les nerfs phréniques),
 - les muscles intercostaux externes (= via les nerfs intercostaux).

(2) GRV (= groupe respiratoire ventral) :

- o Comprend à la fois des neurones agissant sur :
 - l'inspiration (= comme pour le GRD),
 - l'expiration (vs le GRD).
- <u>Rôle</u>: intervient surtout durant l'expiration forcée, quand des mouvements respiratoires plus vigoureux sont nécessaires.
- → Mécanisme d'action du GRD :
 - ρ **Activité cyclique** des *neurones inspiratoires* est *permanente* et produit de **12 à 15 respirations/ mn** = **eupnée** ou *fréquence respiratoire normale*.

B. FACTEURS INFLUANT SUR LA FRÉQUENCE ET L'AMPLITUDE RESPIRATOIRES

→ L'amplitude respiratoire dépend de la fréquence des influx envoyés (= nombre de PA / unité de temps) par le centre respiratoire aux neurones moteurs qui régissent les muscles respiratoires :

Plus les influx sont fréquents ⇒ plus les contractions des muscles respiratoires sont intenses.

- → La fréquence respiratoire dépend de la durée de l'action du centre inspiratoire (= GRD).
 - 1. RÉFLEXES DECLENCHES PAR LES AGENTS IRRITANTS PULMONAIRES
 - Les poumons possèdent des récepteurs réagissant à de nombreux agents irritants.
 - ρ Ces récepteurs communiquent avec les centres respiratoires via des neurones afférents des nerfs vagues.
 - Du mucus, de la poussière, de la fumée de cigarette et des vapeurs nocives ⇒ constriction réflexe des bronchioles.
 - ρ Les mêmes agents présents dans la *trachée* et dans les *bronches* \Rightarrow la toux.
 - ρ Les mêmes agents présents dans les *fosses nasales* ⇒ l'éternuement.
 - 2. INFLUENCE DES CENTRES CÉRÉBRAUX SUPÉRIEURS
 - a) Mécanismes hypothalamiques

- → Les émotions fortes et la douleur activent les **centres sympathiques de l'hypothalamus** ⇒ envoi de PA aux **centres respiratoires** ⇒ modulation de la fréguence et de l'amplitude respiratoires.
- → Exemples :
 - ρ le fait de retenir sa respiration dans un moment de colère ou d'effroi,
 - ↑ de la température corporelle ⇒ ↑ de la fréquence respiratoire,
 - ρ ↓ de la *température corporelle* ⇒ ↓ de la *fréquence respiratoire* (= le refroidissement soudain du corps lors d'une baignade dans de l'eau froide peut causer un arrêt respiratoire).
 - b) Mécanismes corticaux (volition)
- → Bien que la **respiration** soit un **acte involontaire** contrôlée par les **centres respiratoires**, il est possible de *modifier la fréquence et l'amplitude de la respiration*, de **manière volontaire**.
 - Ex. : choix de retenir sa respiration, choix de prendre une profonde inspiration.
- → Dans ces situations, les centres respiratoires du bulbe rachidien (= GRD et GRV) n'interviennent pas → les centres moteurs du cortex cérébral communiquent directement avec les neurones moteurs contrôlant les muscles respiratoires.

Remarque : la capacité de retenir volontairement notre respiration est limitée, car les **centres respiratoires du bulbe rachidien** la rétablissent dès que la concentration en CO₂ dans le sang atteint un niveau critique.

3. FACTEURS CHIMIQUES

- → Les **stimulus chimiques** les plus importants pouvant modifier la fréquence et l'amplitude respiratoires sont la *variation* des concentrations de CO₂, d'O₂, et d'ions H⁺ dans le sang artériel.
- → Il existe 2 types de chimiorécepteurs :
 - chimiorécepteurs centraux (= au niveau du bulbe rachidien),
 - ρ chimiorécepteurs périphériques (= au niveau de la crosse de l'aorte et des artères carotides).
- → Effets des facteurs chimiques :
 - (1) L' ↑ de la P_{CO2} artérielle est le stimulus respiratoire le plus puissant.
 - Les ions H⁺ libérés par la dissociation de l'acide carbonique stimulent directement les chimiorécepteurs centraux ⇒ ↑ réflexe de la fréquence et de l'amplitude respiratoires.
 - (2) Dans des conditions normales, la P_{02} artérielle a peu d'influence directe sur la respiration.
 - En effet, le système respiratoire est "suréquipé" pour obtenir l'O₂, mais il parvient plus difficilement à éliminer le CO₂.
 - (3) Lorsque la P_{02} artérielle devient < 60 mm Hg (= hypoxémie) \rightarrow P_{02} devient le principal stimulus de la respiration, \Rightarrow hyperventilation via les réflexes déclenchés par les chimiorécepteurs périphériques.
 - (4) Les **variations du pH artériel** résultant de la *rétention de* CO₂ ou de la *production d'acides par le métabolisme cellulaire* modifient la ventilation via les *récepteurs périphériques*. Le **pH du sang artériel** n'a *pas d'effet direct* sur les *chimiorécepteurs centraux*.

30n coura

LIENS UTILES

Visiter:

- I. https://biologie-maroc.com
 - Télécharger des cours, TD, TP et examens résolus (PDF Gratuit)
- 2. https://biologie-maroc.com/shop/
 - Acheter des cahiers personnalisés + Lexiques et notions.
 - Trouver des cadeaux et accessoires pour biologistes et géologues.
 - Trouver des bourses et des écoles privées
- 3. https://biologie-maroc.com/emploi/
- Télécharger des exemples des CV, lettres de motivation, demandes de ...
- Trouver des offres d'emploi et de stage

