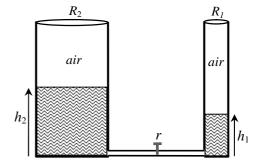
UNIVERSITE IBN ZOHR FACULTE DES SCIENCES AGADIR

FILIÈRE: SVI – STU1 ÉLÉMENT DE MODULE: PHYSIQUE 1 SESSION NORMALE. DURÉE: 1,5 HEURES

QUESTIONS DE COURS:

- 1) Soit un point matériel M, de masse m, en mouvement dans un référentiel galiléen R(0; x, y, z).
 - a) Ecrire les expressions des vecteurs position et vitesse du mobile M dans le système de coordonnées polaires.
 - **b**) En déduire les expressions des vecteurs vitesse et accélération lorsque le point matériel M décrit une trajectoire circulaire de rayon R avec une vitesse angulaire ω_0 uniforme. Représenter ces deux vecteurs sur un schéma.
- 2) Citer les causes d'instabilité des noyaux atomiques et les types de désintégrations y afférentes (qui leurs sont liées). Ecrire les équations de désintégration correspondantes.

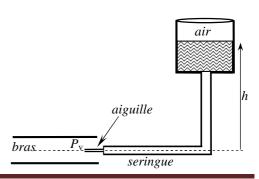

STATIQUE DES FLUIDES

Deux récipients cylindriques R_1 et R_2 , de sections respectives S_1 =S et S_2 =2S, sont reliés par un tube de section négligeable comportant un robinet r (figure ci-dessous). Les bases de R_1 et R_2 sont situées dans un même plan horizontal.

1) Le robinet r étant fermé, on verse du mercure de masse volumique ρ , jusqu'à la hauteur $h_1=h$ dans R_1 . Du mercure est également versé dans R_2 jusqu'à la hauteur $h_2=\frac{3}{2}h$.

Exprimer en fonction de h les déplacements x_1 et x_2 des surfaces libres dans R_1 et R_2 , après avoir ouvert le robinet r.

- 2) On verse par la suite une hauteur $h_{\rm e}$ d'eau, de masse volumique $\rho_{\rm e}$, dans le récipient R_1 . L'eau et le mercure étant deux fluides non miscibles, déterminer à l'équilibre, en fonction de $h_{\rm e}$, ρ et $\rho_{\rm e}$, les expressions :
 - a) des déplacements y_1 et y_2 du niveau de mercure dans les récipients R_1 et R_2 ;
 - **b**) de la dénivellation D entre les deux surfaces libres dans R_1 et R_2 .



3) On verse par la suite, dans le récipient R_2 , une hauteur h_a d'un acide de masse volumique ρ_a ($\rho_a < \rho$) de telle manière qu'à l'équilibre les surfaces libres des fluides dans les deux récipients soient dans le même plan horizontal.

Déterminer, en fonction de h_e , ρ , ρ_e et ρ_a , l'expressions de la hauteur h_a .

DYNAMIQUE DES FLUIDES

Pour effectuer une transfusion intraveineuse, on utilise une seringue terminée par une aiguille cylindrique de longueur L et de diamètre d. On souhaite que le sang pénètre dans la veine à raison de 4,5 cm³ par minute, sous une pression égale à la pression $P_{\rm v}$ dans la veine. La seringue est alimentée à partir d'un flacon suspendu au dessus du patient. On désigne par h la hauteur du sang dans le flacon par rapport au niveau horizontal formé par le bras et l'aiguille.

- 1) Sachant que la pression veineuse P_v est supérieure de 20 mm Hg à la pression atmosphérique P_0 , Calculer la valeur de la pression P_e à l'entrée de l'aiguille pour que cette transfusion soit réussie. (On admettra que l'écoulement du sang dans l'aiguille est laminaire).
- 2) A quelle hauteur doit-on suspendre le flacon pour obtenir ce résultat ? On repèrera cette hauteur par la quantité h définie précédemment.

On supposera que l'on se trouve en régime statique dans toute la partie du système autre que l'aiguille et que le sang est un fluide incompressible.

Données : $P_0 = 10^5 \ Pa = 760 \ mm \ Hg.$ $L = 3 \ cm.$ $d = 0.36 \ mm.$ $g = 9.81 \ m.s^{-2}.$

Viscosité du sang : $\mu = 2,4.10^{-3} Pa.s$

Masse volumique du sang : $\rho_s = 1020 \text{ kg.m}^{-3}$.

Formulaire: Le débit volumique d'un fluide, en écoulement laminaire, dans une conduite cylindrique

horizontale de longueur L et de rayon r (loi de Poiseuille) s'écrit : $q_v = \frac{\pi r^4}{8 \mu L} \Delta P$.

Bon coura

LIENS UTILES

Visiter:

- I. https://biologie-maroc.com
 - Télécharger des cours, TD, TP et examens résolus (PDF Gratuit)
- 2. https://biologie-maroc.com/shop/
 - Acheter des cahiers personnalisés + Lexiques et notions.
 - Trouver des cadeaux et accessoires pour biologistes et géologues.
 - Trouver des bourses et des écoles privées
- 3. https://biologie-maroc.com/emploi/
- Télécharger des exemples des CV, lettres de motivation, demandes de ...
- Trouver des offres d'emploi et de stage

