Série de Travaux Dirigés N° 3

(Réactions enzymatiques à deux substrats)

Exercice N°1

Une enzyme catalyse une réaction selon un mécanisme ordonné. On mesure la vitesse initiale de la réaction pour différentes concentrations de l'un des substrats (X) en maintenant fixe la concentration de l'autre substrat (Y), et inversement.

Les résultats, exprimés en µM.min⁻¹, sont les suivants :

[X] (mM)	[Y] (µM)		
	3	5	10
0,33	0,017	0,025	0,039
0,67	0,024	0,033	0,038
5	0,034	0,047	0,061

- 1. En n'utilisant que les deux représentations primaires, déterminer les paramètres cinétiques auxquels vous avez accès.
- 2. En déduire l'ordre de fixation des substrats. Quel paramètre cinétique n'est pas déterminé ?

Exercice N°2

La phospholipase A2 catalyse l'hydrolyse de l'acide gras estérifié en position 2 des 1-2-diacylphosphoglycérides en présence d'ion calcium. On mesure les vitesses initiales d'hydrolyse de la dibutyryl-lécithine (DBL), à différentes concentrations de ce substrat et de calcium.

La réaction est suivie en titrant l'acide libéré par la soude et les résultats, en µmoles d'acide libéré.min⁻¹.mg⁻¹ de phospholipase, sont les suivants :

[DBL] (mM)	[Ca ²⁺] x 10 ⁶ (M)			
	25	50	100	200
11,4	0,60	0,83	1,00	1,15
22,7	1,07	1,40	1,70	1,85
34	1,45	1,85	2,15	2,35
45,4	1,75	2,20	2,50	2,70

- 1. Déterminer le mécanisme et les paramètres cinétiques de cette réaction.
- 2. On étudie l'effet de l'acide butyrique (analogue de la DBL) et du baryum (analogue du calcium).

L'acide butyrique se comporte comme un inhibiteur compétitif de la DBL et comme un inhibiteur un-compétitif du calcium. Le baryum se comporte comme un inhibiteur compétitif du calcium et de la DBL. Ces résultats sontils en accord avec le précédent ?

Exercice N°3

On étudie le mécanisme catalytique de la glycogène phosphorylase en mesurant les vitesses initiales de la réaction pour différentes concentrations des 2 substrats (le glycogène et le phosphate).

Les résultats, en µmoles de glucose 1-phosphate.min⁻¹.mg⁻¹ glycogène phosphorylase, sont les suivants :

[phosphate] x 10 ³ (M)	[glycogène] (mg.mL ⁻¹)				
[priospriate] x 10 (iii)	3,2	8	16	24	48
6	12	18	21	23	25
15	24	35,5	43	46	49
30	35,5	53	64	68,5	74
45	43	64	77	82	88
60	47,5	71	85	91,5	98,5

Écrire la réaction catalysée.

Déterminer le mécanisme et les paramètres cinétiques de cette réaction.

Exercice N°4

Une protéine kinase catalyse la réaction 1 : protéine substrat (inactive) + ATP ---> protéine substrat phosphorylée + ADP

La protéine substrat phosphorylée catalyse à son tour la réaction 2 : lipide Cn:0 + malonyl-CoA ---> lipide Cn+2:0

Le mécanisme de la réaction 2 est ordonné.

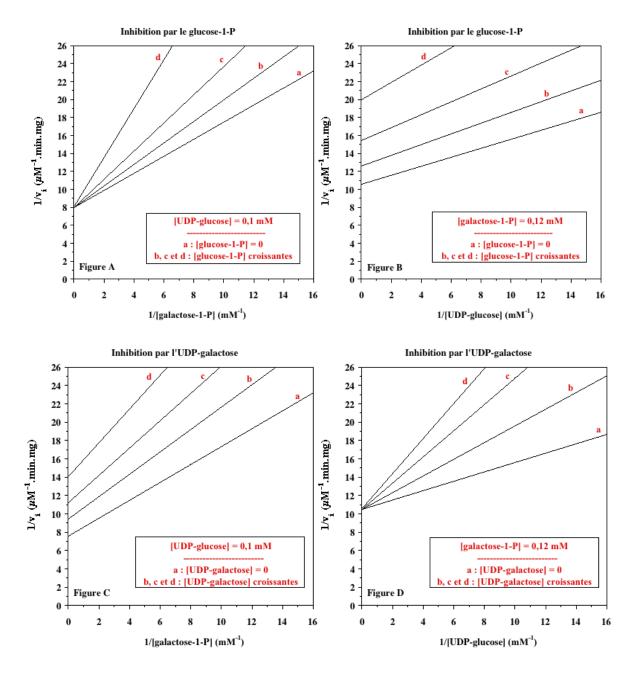
On mesure la vitesse initiale de la réaction 2 pour différentes concentrations des 2 substrats lipide Cn:0 et malonyl-CoA. Les résultats, exprimés en uM.min⁻¹, sont les suivants :

1 /			
lipide Cn:0 (mM)	[malonyl-CoA] (µM)		
lipide Cit.0 (IIII-1)	0,33	0,67	5
3	0,017	0,024	0,034
5	0,025	0,033	0,047
10	0,039	0,038	0,061

- 1. Déterminer les paramètres cinétiques auxquels on a accès en n'utilisant que les deux représentations primaires.
- 2. Déterminer l'ordre de fixation des substrats.
- 3. De quel paramètre cinétique ne détermine-t-on pas la valeur ?

Exercice N°5

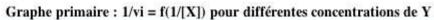
La galactose-1-phosphate uridyltransférase catalyse la réaction : UDP-glucose + galactose-1-phosphate <===> UDP-galactose + glucose-1-phosphate

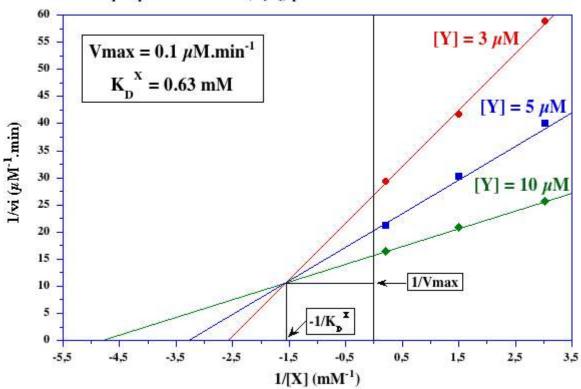

Le mécanisme de la réaction est ordonné.

On mesure la vitesse initiale de la réaction pour différentes concentrations des 2 substrats UDP-glucose et galactose-1-phosphate. Les résultats, exprimés en µM.min⁻¹.mg⁻¹, sont les suivants :

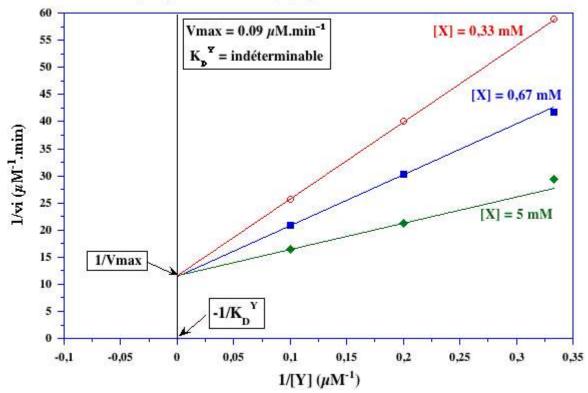
[UDP-glucose] (10 ⁻³ M)	[galactose-1-phosphate] (10 ⁻³ M)			
[ODI glucose] (10 M)	0,06	0,12	0,25	0,50
0,05	0,034	0,048	0,061	0,069
0,10	0,041	0,063	0,087	0,105
0,20	0,046	0,075	0,111	0,143
0,50	0,050	0,085	0,133	0,182

1. Déterminer le mécanisme et les paramètres cinétiques de cette réaction.


On étudie l'effet inhibiteur des produits de cette réaction, c'est-à-dire l'inhibition par le glucose-1-P (figures A et B, ci-dessous) et l'inhibition par l'UDP-galactose (figures C et D, ci-dessous).



- 2. Les résultats sont-ils en accord avec le mécanisme déterminé ?
- 3. Quelle information supplémentaire apportent-ils?
- 4. Proposer un schéma réactionnel compatible avec ces résultats.


Correction TD 3

Exercice N°1 – mécanisme ordonné

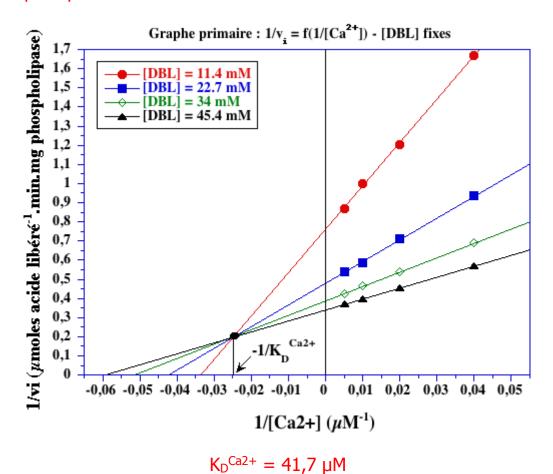
Graphe primaire : 1/vi = f(1/[Y]) à concentrations fixes de X.

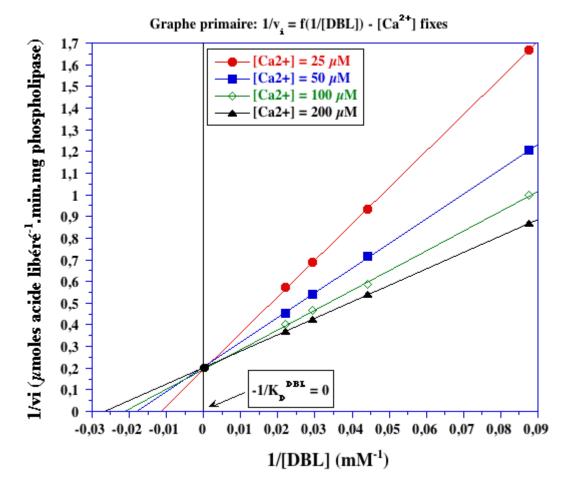
$$1/V_{Max} = 10 \ \mu M^{-1}.min => V_{Max} = 0,1 \ \mu M.min^{-1}$$

 $1/K_D^Y = 0$ (point de concourrance sur l'axe des ordonnées) => K_D^Y = infini => Y ne peut pas se fixer sur l'enzyme libre.

C'est donc un mécanisme ordonné avec Y en second.

$$E + X = \frac{K_D^X}{E - X + Y} = \frac{K_M^Y}{E - X - Y} = \frac{k_{cat}}{k_{-2}} E + P$$

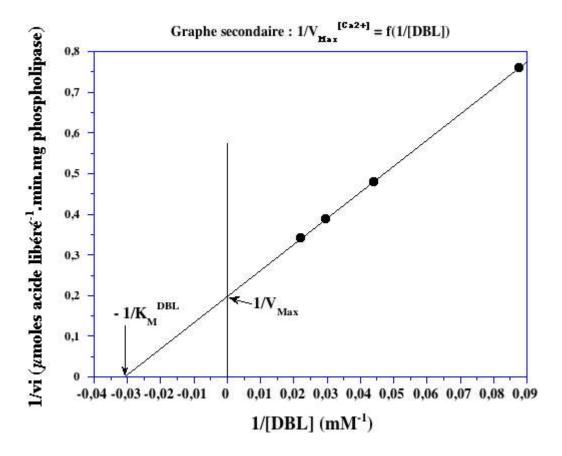

$$E - X - Y = \frac{k_{cat}}{k_{-2}} E + P$$


$$E - X - Y = \frac{k_{cat}}{k_{-2}} E + P$$

$$E - X - Y = \frac{k_{cat}}{k_{-2}} E + P$$

Exercice N°2: Mécanisme ordonné calcium - DBL et inhibiteurs

1. Graphes primaires



 $1/K_D^{DBL} = 0$ (point de concourrance sur l'axe des ordonnées) => $K_D^{DBL} =$ infini => DBL se fixe en second.

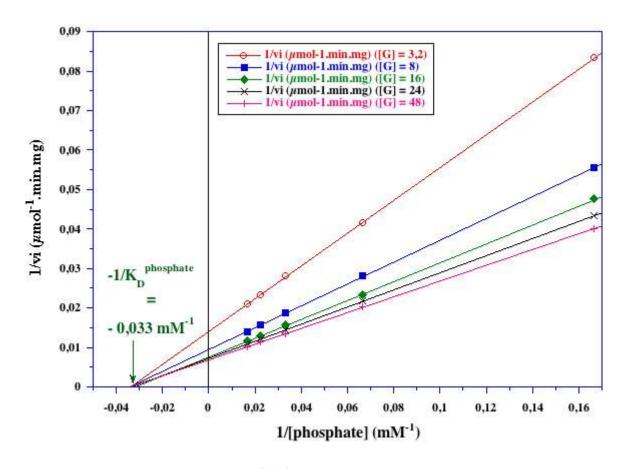
2. Graphe secondaire

A partir du graphe primaire pour le calcium (ci-dessus), on obtient les valeurs du tableau ci-dessous qui permettent de tracer le graphe secondaire pour la DBL (ci-dessous) :

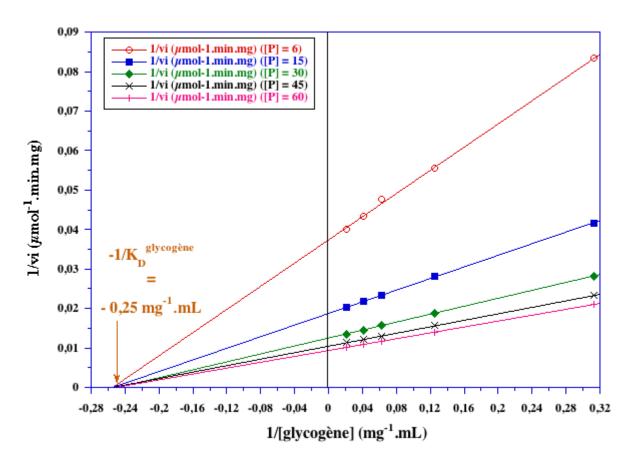
[DBL] (mM)	1/[DBL] (mM ⁻¹)
11,4	0,088
22,7	0,044
34	0,029
45,4	0,022

 $1/V_{Max} = 0.2 \mu mol^{-1}.min.mg et -1/K_M^{DBL} = 0.032 mM^{-1} => V_{Max} = 5$ μ mol.min⁻¹.mg⁻¹ et K_M^{DBL} = 31 mM.

Il s'agit d'un mécanisme ordonné.

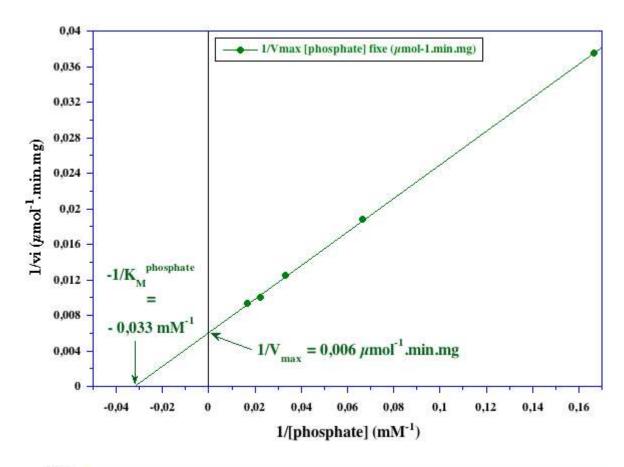

Il s'agit d'un mécanisme ordonné.
$$K_{D}^{Ca2+} = 41.7 \, \mu M = E-Ca + DBL = 31 \, mM = E-Ca-DBL = k_{cat} = k_{cat}$$

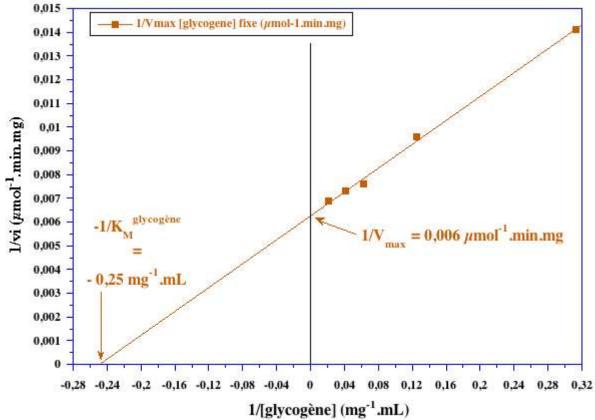
3. Effet des inhibiteurs : baryum et acide butyrique


	,	, ,
inhibiteur	1er substrat : Ca ²⁺	2ème substrat : DBL
	Compétitif pour le Ca ²⁺ :	Puisque compétitif pour le Ca ²⁺ ,
baryum	fixation sur la forme libre	alors forcément compétitif pour
	Е	DBL
acide	Incompétitif : fixation sur	Compétitif: fixation de Ac. but.
butyrique (Ac.	E-Ca (qui est une forme	sur E-Ca qui est une forme libre
but.)	ES)	pour DBL

Exercice N°3: Mécanisme au hasard - glycogène - phosphate

1. Graphes primaires


 $K_D^{phosphate} \approx 30 \text{ mM}$



 $K_D^{glycog\grave{e}ne} = 4 \text{ mg.ml}^{-1}$

2. Graphes secondaires

valeurs issues du graphe primaire		valeurs issues du graphe primaire		
	le phosphate	pour le glycogène		
[glycogène]	1/V _{max} [glycogène]	[phosphate]	$1/V_{max}^{[phosphate]}$	
(mg.mL ⁻¹)	fixe (µmol ⁻¹ .mn.mg)	(mM)	fixe (µmol ⁻¹ .mn.mg)	
3,2	0,0141	6	0,0375	
8	0,0096	15	0,0188	
16	0,0076	30	0,0125	
24	0,0073	45	0,0100	
48	0,0069	60	0,0094	

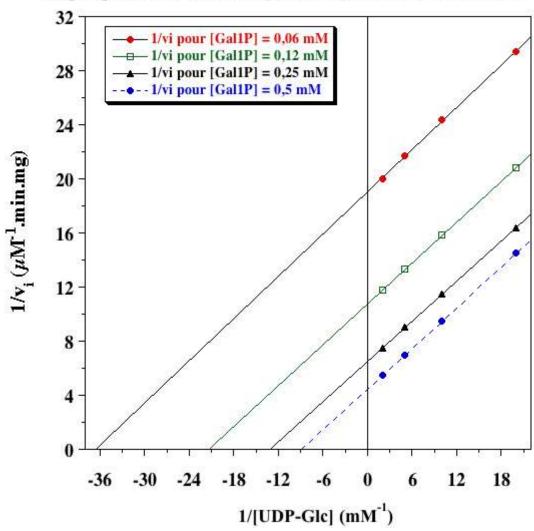
 $V_{\text{Max}} \approx$ 167 µmoles.min $^{\text{-}1}$; $K_{\text{M}}^{\text{phosphate}} \approx$ 30 mM ; $K_{\text{M}}^{\text{glycogène}}$ = 4 mg.ml $^{\text{-}1}$

Il s'agit d'un mécanisme réactionnel au hasard.

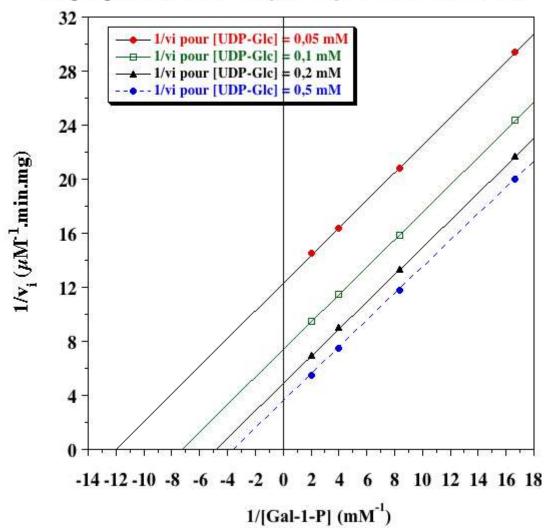
$$E + phosphate - E-phosphate$$

$$Glyc \downarrow K_D^{Glycogène} \qquad Glyc \downarrow K_M^{Glycogène}$$

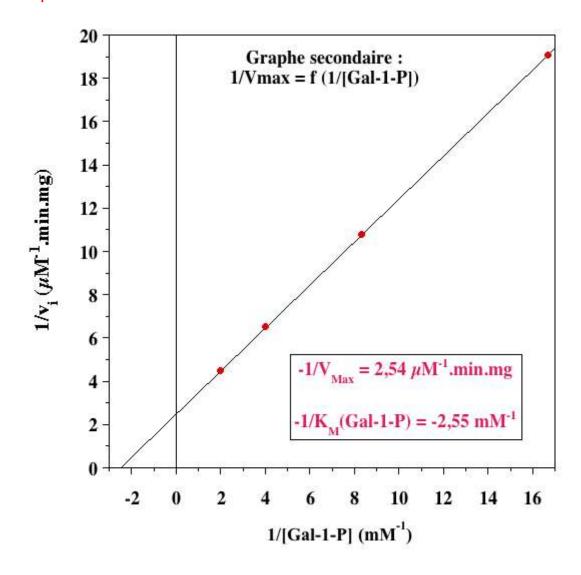
$$E-Glyc + phosphate - E-Glyc-phosphate - k_{cat} \atop k_{-2} = E + P$$

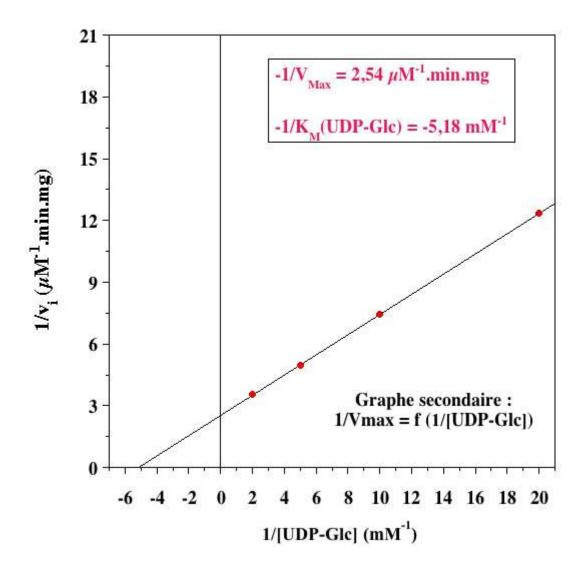

$$E. Jaspard (2017)$$

Il s'agit d'un schéma carré puisque $K_D^{phosphate} = K_M^{phosphate}$ et $K_D^{glycogène} = K_M^{glycogène}$.


Exercice N°5 - mécanisme ping-pong

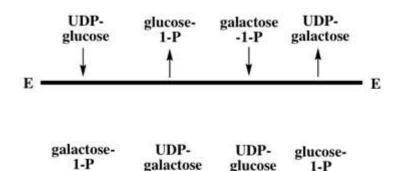
1. Graphes primaires




Graphe primaire: 1/vi = f (1/[Gal-1-P]) à [UDP-Glc] constante

L'ensemble de droites parallèles indique un mécanisme ping-pong.

2. Graphes secondaires



 V_{Max} = 0,39 μ M.min⁻¹.mg⁻¹ $K_{M}^{galactose-1-P}$ = 0,39 mM $K_{M}^{UDP-glucose}$ = 0,19 mM

Effet des inhibiteurs (voir l'énoncé)			
UDP-glucose Galactose-1-P			
UDP-galactose Compétitif Non compétitif			
Glucose-1-P Non compétitif Compétitif			

Le schéma du bas de la figure ci-dessous impose une hypothèse supplémentaire : en effet, l'UDP galactose peut difficilement être synthétisé à partir du galactose-1-P sans apporter l'UDP comme substrat.

2 schémas de type ping-pong possibles

E. Jaspard (2014)

Une expérience supplémentaire est donc effectuée : en utilisant du ¹⁴C-UDP-glucose à concentration saturante, en absence de galactose-1-P, le ¹⁴C-UMP se fixe de façon covalente sur l'enzyme.

Cette réaction démontre la validité de la 1ère partie du schéma du haut ou la 2nde partie du schéma du bas.

On suit aussi la libération de glucose-1-P. Le tableau suivant résume les résultats obtenus.

Ε (μΜ)	¹⁴ C-UMP incorporé sur l'enzyme (μΜ)	glucose-1-P (μM)
6	6,1	6,2
6	5,9	5,8
2	1,9	1,8
2	2,1	2,2

D'après ces résultats, on obtient des quantités équimolaires pour les 2 substrats (UDP-glucose et glucose-1-P).

Le schéma du haut est donc correct : l'enzyme doit être sous la forme libre E pour fixer l'UDP-glucose.

En revanche, l'enzyme devrait être sous la forme E-UMP pour libérer l'UDPgalactose comme dans le schéma du bas.

30n coura

LIENS UTILES

Visiter:

- I. https://biologie-maroc.com
 - Télécharger des cours, TD, TP et examens résolus (PDF Gratuit)
- 2. https://biologie-maroc.com/shop/
 - Acheter des cahiers personnalisés + Lexiques et notions.
 - Trouver des cadeaux et accessoires pour biologistes et géologues.
 - Trouver des bourses et des écoles privées
- 3. https://biologie-maroc.com/emploi/
- Télécharger des exemples des CV, lettres de motivation, demandes de ...
- Trouver des offres d'emploi et de stage

