

Hydrogéologie

STU S5

- · Cahiers de Biologie
- + Lexique
- Accessoires de Biologie

Visiter Biologie Maroc pour étudier et passer des QUIZ et QCM enligne et Télécharger TD, TP et Examens résolus.

- CV Lettres de motivation • Demandes...
- Offres d'emploi
- Offres de stage & PFE

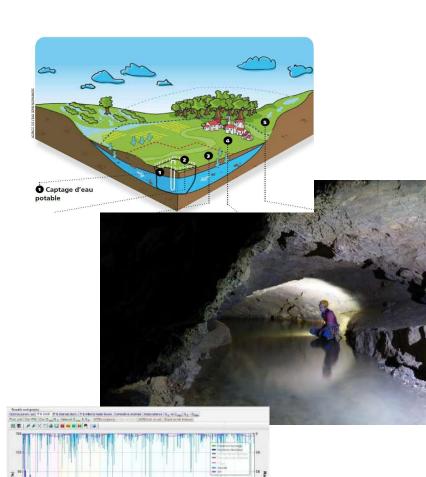
Bruno Arfib

Université Aix-Marseille Laboratoire CEREGE

Master GeE (Sciences de l'Eau, GERINAT, MAEVA)
+ Master STPE

Cours d'Hydrogéologie générale

www.karsteau.fr

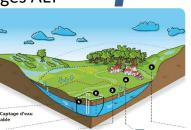

+ AMETICE

Objectifs

- Connaître le vocabulaire de l'hydrogéologie, les grands types d'aquifères et de nappes
- Comprendre et quantifier les flux d'eau dans les hydrosystèmes (relations eau de surface – eau souterraine)
- Acquérir les méthodes d'étude de l'écoulement de l'eau souterraine dans les milieux poreux et karstiques

- Manipuler les concepts de l'hydrogéologie appliquée à travers des exercices généralement tirés de cas d'étude.
- Apprentissage des méthodes classiques d'investigation de la ressource en eau

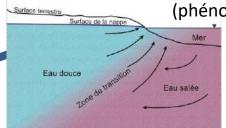
Thèmes abordés


Karst et hydrogéologie régionale (Toulon, Cassis)

Piézométrie (carte hydrogéologique)

Loi de Darcy (quantification du débit)

Périmètres de protection autour des captages AEP


Ressource en eau Milieu

Essais de pompage (puits et aquifère)

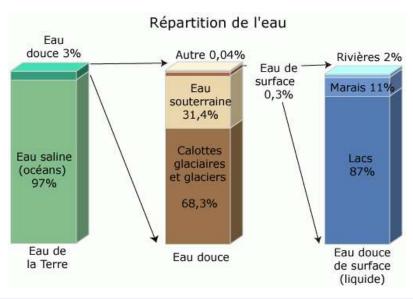
Ressource et aquifère (phénomèn

Ressource en eau en zone côtière (phénomène d'intrusion saline)

LOSING STREAM

Introduction

Qu'est-ce que l'hydrogéologie? (Hydrologie – hydrogéologie – hydraulique)


Pourquoi étudier l'hydrogéologie?

- → eau souterraine = ressource * (eau potable, industrie, agriculture, énergie, écosystèmes)
- → relations eau souterraine eau de surface (qualité de l'eau, quantité d'eau, écosystèmes),
- → eau dans de nombreux risques (mouvements gravitaires (mouvement de terrain, avalanche), inondations, coulées boueuses)...,
- → nombreuses actions publiques en lien avec le contexte règlementaire (compétence GEMAPI**, autorisations d'aménagement, prélèvements et rejets d'eau...)

^{*} Une ressource géologique est un composé d'une des enveloppes solides ou fluides de la Terre pouvant faire l'objet d'une utilisation par l'homme, au bénéfice de ce dernier. Cette définition est donc relative, puisqu'elle fait référence à différents besoins humains, qui peuvent varier en fonction de facteurs culturels, technologiques, économiques, etc.

^{** &}quot;Gestion des milieux aquatiques et prévention des inondations »

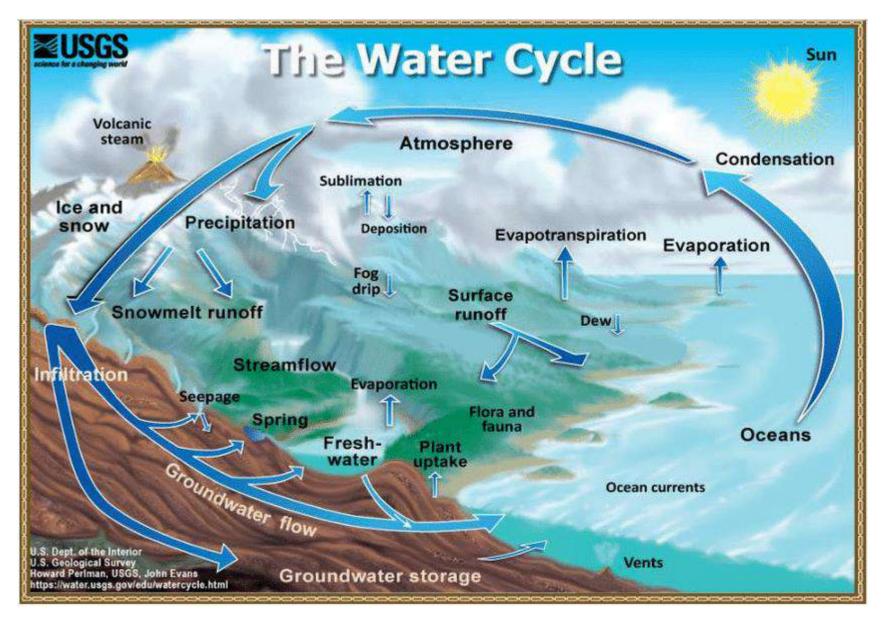
L'eau sur la terre et le cycle de l'Eau

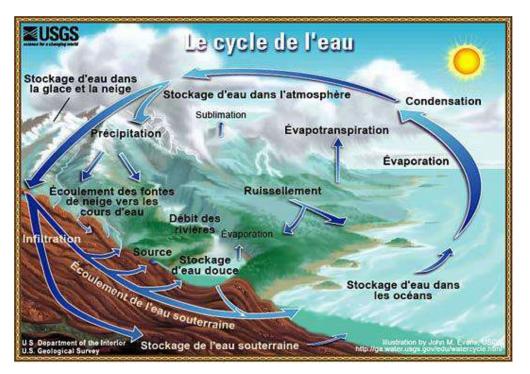
Estimation de la distribution globale de l'eau : Source d'eau Volume d'eau (km3) Volume d'eau (miles3) % d'eau douce % d'eau totale Océans, mers & baies 1,338,000,000 321,000,000 96.5 % Calottes glaciaires, glaciers et 24,064,000 5,773,000 68.7 % 1.74 % neiges éternelles 23,400,000 5,614,000 1.7 % Eau souterraine 0.76 % 10.530.000 2.526.000 30.1 % douce saline 12,870,000 3,088,000 0.94 % Humidité du sol 16,500 3,959 0.05 % 0.001 % Hydrolaccolithe & pergélisol 300,000 71,970 0.86 % 0.022 % 42.320 0.013 % 176,400 Lacs 0.007 % d'eau douce 91,000 21,830 0.26 % d'eau saline 85,400 20,490 0.006 % Atmosphère 12.900 3.095 0.04 % 0.001 % Eau marécageuse 11,470 2,752 0.03 % 0.0008 % 0.0002 % Rivières 2,120 509 0.006 % Eau biologique 1,120 269 0.003 % 0.0001 % 1.386.000.000 332.500.000 100 %

Source: Gleick, P. H., 1996: Water resources. In Encyclopedia of Climate and Weather, ed. by S. H. Schneider, Oxford University Press, New York, vol. 2, pp.817-823.

Océans = 70 % de la surface du globe, 97% de la masse totale d'eau

97% d'eau salée 3% d'eau douce




Temps de renouvellement (ou temps de séjour moyen ou temps de résidence)

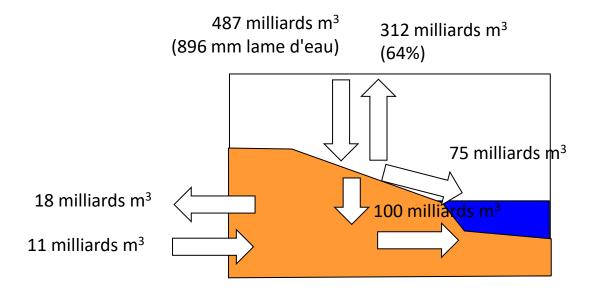
Réservoir	Temps de renouvellement (Jacques, 1996)	Temps de renouvellement (Gleick, 1993)
Océans	2500 ans	3100 ans
Calottes glaciaires	1000 – 10'000 ans	16000 ans
Eaux souterraines	1500 ans	300 ans
Eaux du sol	1 an	280 jours
Lacs	10-20 ans	1-100 ans (eaux douces) 10-1000 ans (eaux salées)
Cours d'eau	10-20 jours	12-20 jours
Eau atmosphérique	8 jours	9 jours
Biosphère	Quelques heures	-

http://echo2.epfl.ch/e-drologie/chapitres/chapitre1/main.html

le cycle de l'Eau

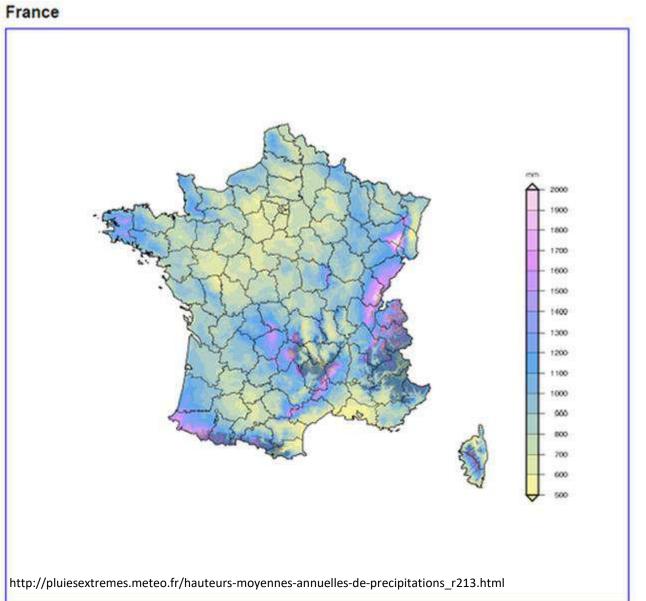
Des flux:

- Evaporation
- Evapotranspiration
- Précipitations
- Ecoulement de l'eau souterraine
- Ecoulement de l'eau de surface


+

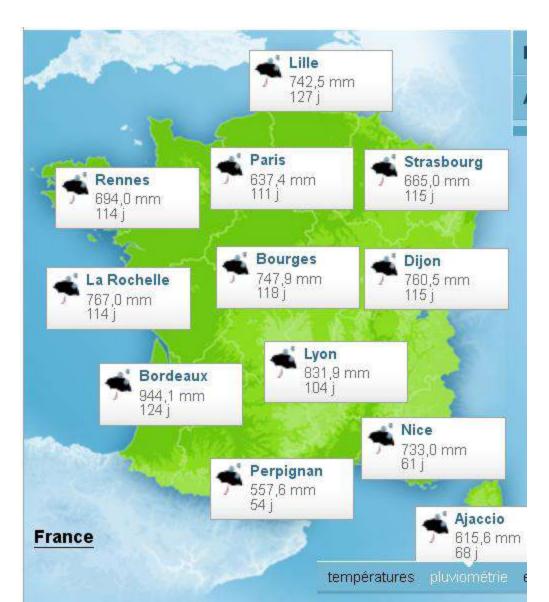
- Ruissellement
- Infiltration

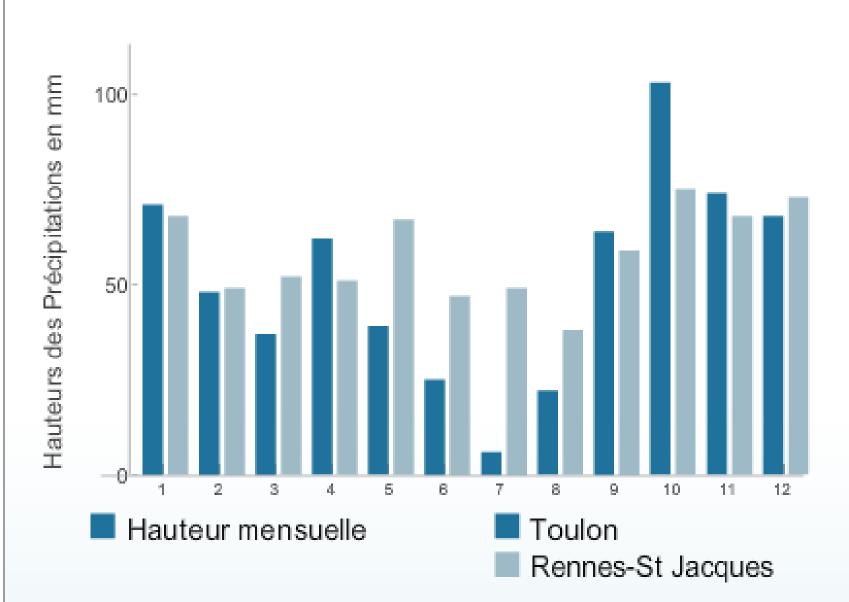
Des stocks:

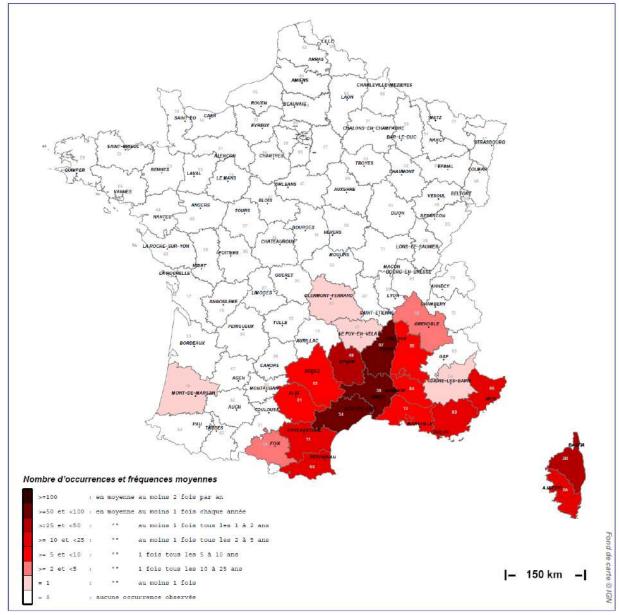

- Océan
- Glace
- Eau souterraine
- Eau de surface (lac + rivières)
- Atmosphère
- Biologie

Les volumes d'eau en transit en France à l'échelle annuelle

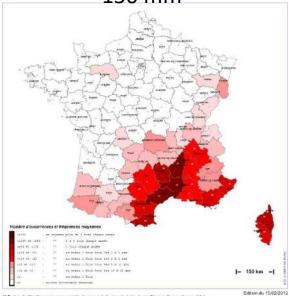
chiffres: http://www.statistiques.developpement-durable.gouv.fr/ - consulté le 24/08/12


Moyenne annuelle de référence 1981-2010 des précipitations


Pluie moyenne (1981-2010) – Météo France

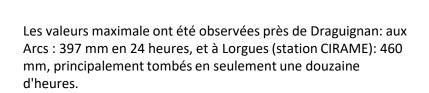

http://climat.meteofrance.com/

Normales mensuelles

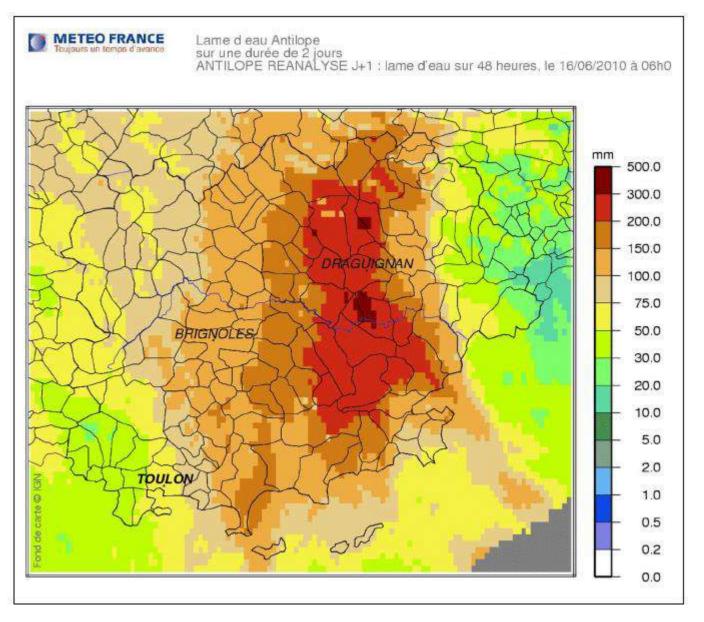

200 mm

Edition du 15/02/2012

Episodes avec plus de 150 mm en 1 jour - Période 1962/2011


http://pluiesextremes.meteo.fr/statistiques_r6.html

Episodes avec plus de 100 mm en 1 jour - Période 1962/2011


Episode méditerranéen (ou Cévenole)

Draguignan 15 juin 2010

<u>De telles quantités ayant frappé une grande partie du</u> département entraînent un volume d'eau précipité gigantesque.

Des inondations catastrophiques ont été provoquées par ruissellement et par débordement de la Nartuby et de l'Argens.

Evaluation de l'incidence de la pluie du Var sur le bassin de l'Arc - 2010 - SABA - GINGER www.saba-arc.fr/IMG/pdf/Evaluation_de_l_incidence_de_la_pluie_du_Var_sur_le_bassin_de_l_Arc_-_2010_-_SABA_-_GINGER.pdf

La catastrophe de La Vésubie (06) : événement méditerranéen couplé à la tempête Alex 3 octobre 2020

- → 500 mm de pluie à Saint-Martin-Vésubie en 24 heures,
- •380 mm à Andon,
- •343 mm à Tende,
- •336 mm à Coursegoules,
- •319 mm au Mas,
- •271 mm à Breil-sur-Roya,
- •199 mm à Sospel,
- •178 mm à Caussols,

https://meteofrance.com/actualites-et-dossiers-0/tempete-alex-des-intemperies-exceptionnelles

Evaporation et évapotranspiration

Evaporation ≠ Evapotranspiration

- Radiation solaire
- Température de l'air
- Humidité relative (+ pluie)
- Vitesse du vent

- Type de végétation
- Stade de développement de la végétation (+ effet combiné de la protection du sol par la végétation, ce qui limite l'évaporation)

Evaporation et évapotranspiration

Evaporation ≠ Evapotranspiration

- Radiation solaire
- Température de l'air
- Humidité relative (+ pluie)
- Vitesse du vent

- Type de végétation
- Stade de développement de la végétation (+ effet combiné de la protection du sol par la végétation, ce qui limite l'évaporation)

ETRéelle ≠ ETP

ETP: Penman-Monteith (heure ou jour), Thornthwaite (mois)

Evaporation et évapotranspiration

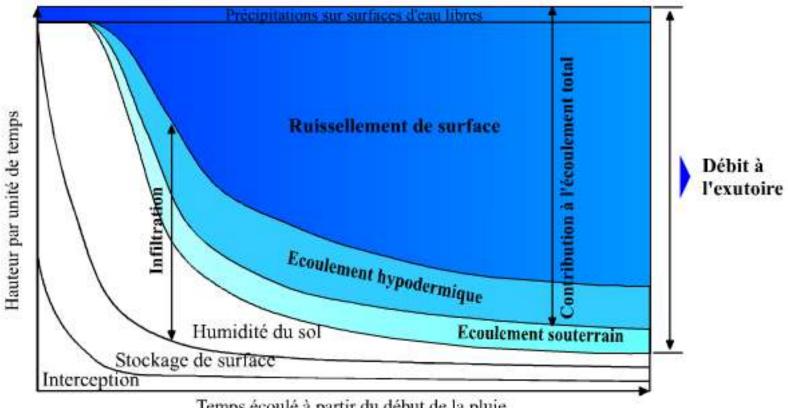
Evaporation ≠ Evapotranspiration

- Radiation solaire
- Température de l'air
- Humidité relative (+ pluie)
- Vitesse du vent

- Type de végétation
- Stade de développement de la végétation (+ effet combiné de la protection du sol par la végétation, ce qui limite l'évaporation)

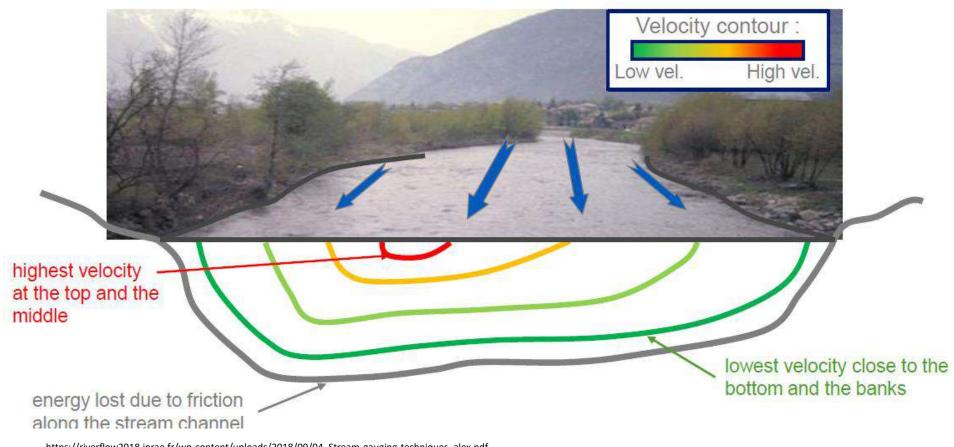
ETRéelle ≠ ETP

ETP: Penman-Monteith (heure ou jour), Thornthwaite (mois)


Déficit d'écoulement annuel : formule de Turc

$$DE = \frac{P}{\sqrt{0.9 + \frac{P^2}{L^2}}}$$

avec L= $300 + 25 T + 0.05 T^3$


où T est la température moyenne annuelle (°C) et P est la précipitation moyenne annuelle (mm/an).

Variation du ruissellement de surface (théorique) au cours d'une averse d'intensité constante

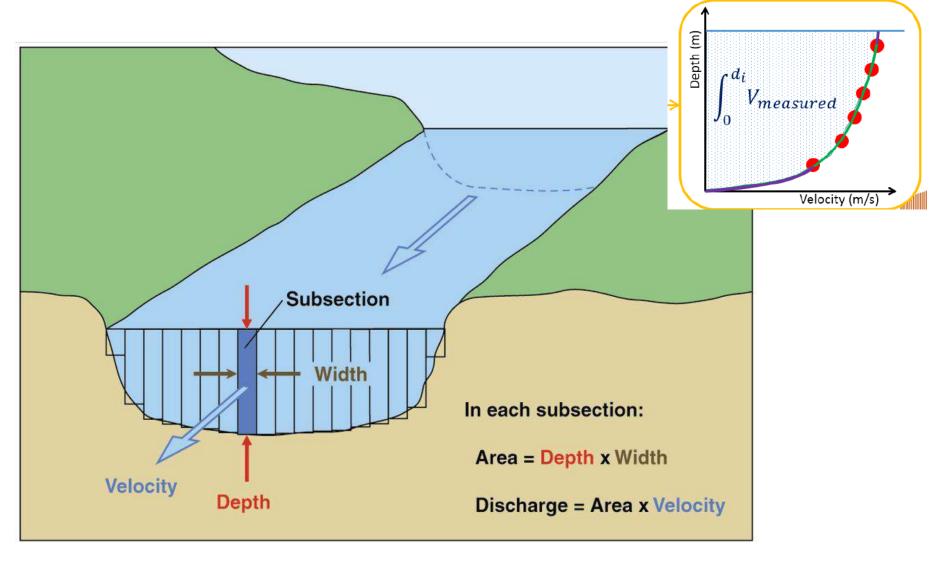

Temps écoulé à partir du début de la pluie

Fig. 5. 9 - Répartition de la hauteur de précipitations au cours d'une averse d'intensité constante (d'après Réméniéras, 1976).

https://riverflow2018.inrae.fr/wp-content/uploads/2018/09/04_Stream-gauging-techniques_alex.pdf

Mesure du débit d'un cours d'eau

Où accéder à l'eau souterraine?

Source

Forage ou puits

(piézomètre)

Grottes

Définitions

AQUIFERE

Un <i>aquifère</i> est un corps (couche, massif) de roches			
comportant une zone suffisamment conductrice d'eau			
souterraine pour permettre :			
- l' significatif d'une nappe souterraine et			
- le de quantité d'eau appréciable.			
Un aquifère peut comporter une zone			
AQUITARD			
Un <i>aquitard</i> est une formation peu perméable (ou),			
dans laquelle l'eau souterraine circule à vitesse. Ces			
formations peuvent assurer la			
superposés par le phénomène de <u>drainance</u> .			
AQUICLUDE			
Les <i>aquicludes</i> sont des formations ne produisant pas d'eau.			
d out.			
<u>NAPPE</u>			
Une <i>nappe</i> est l'ensemble des eaux comprises dans lad'un aquifère, dont toutes les parties sont en liaison hydraulique (Margat et Castany).			

BASSINS VERSANTS

Le <i>bassin versant</i> représente l'	sur laquelle se
base l'analyse du	et de ses effets.
Le <u>bassin versant hydrologique</u> est drainée par u	
l'amont du point le plus bas considér	
Le <u>bassin versant hydrogéologique</u> , écoulements Il dif	
hydrologique en fonction de la natur l'affleurement et en profondeur.	
Bassin d'alimentation d'un captag impluvium): surface topographique d'infiltration (pluie, cours d'eau) alim niveau d'un captage ou d'une source.	e à travers laquelle l'eau nente la qui est drainée au
Le <u>niveau piézométrique</u> est nappe d'eau souterraine lorsque celle pression atmosphérique. Le niveau p puits, forages ou piézomètres, ainsi d l'eau souterraine (sources, lac ou riv	e-ci est en avec la viézométrique dans des que sur les zones d'affleurement de

Définitions

AQUIFERE

Un *aquifère* est un corps (couche, massif) de roches perméables comportant une zone saturée suffisamment conductrice d'eau souterraine pour permettre :

- l'écoulement significatif d'une nappe souterraine et
- le captage de quantité d'eau appréciable.

Un aquifère peut comporter une zone non saturée.

AQUITARD

Un *aquitard* est une formation peu perméable (ou semi-perméable), dans laquelle l'eau souterraine circule à faible vitesse. Ces formations peuvent assurer la communication entre des aquifères superposés par le phénomène de **drainance**.

AQUICLUDE

Les *aquicludes* sont des formations imperméables ne produisant pas d'eau.

NAPPE

Une *nappe* est l'ensemble des eaux comprises dans la zone saturée d'un aquifère, dont toutes les parties sont en liaison hydraulique (Margat et Castany).

BASSINS VERSANTS

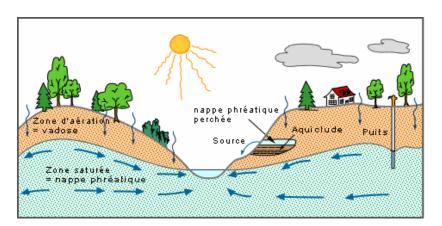
Le <u>bassin versant</u> représente l'unité géographique sur laquelle se base l'analyse du cycle hydrologique et de ses effets.

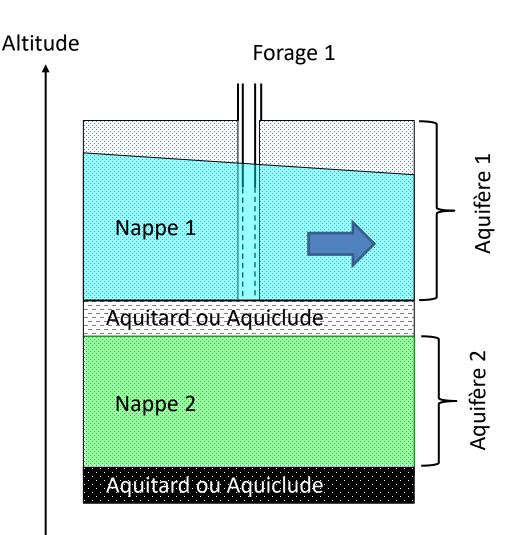
Le <u>bassin versant hydrologique</u> est défini comme la totalité de la surface topographique drainée par un cours d'eau et ses affluents à l'amont du point le plus bas considéré.

Le <u>bassin versant hydrogéologique</u>, ou réel, tient compte des écoulements d'eau souterraine. Il diffère du bassin versant hydrologique en fonction de la nature lithologique des roches à l'affleurement et en profondeur.

Bassin d'alimentation d'un captage, ou d'une source (ou impluvium) : surface topographique à travers laquelle l'eau d'infiltration (pluie, cours d'eau) alimente la nappe qui est drainée au niveau d'un captage ou d'une source.

Le <u>niveau piézométrique</u> est l'altitude de la surface de l'eau d'une nappe d'eau souterraine lorsque celle-ci est en équilibre avec la pression atmosphérique. Le niveau piézométrique se mesure dans des puits, forages ou piézomètres, ainsi que sur les zones d'affleurement de l'eau souterraine (sources, lac ou rivière en connexion avec la nappe).

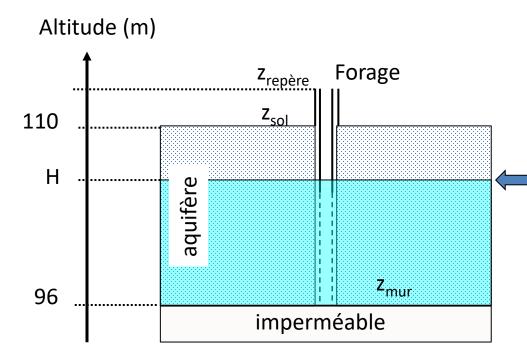

- Écoulement et niveau piézométrique


Niveau piézométrique

Le <u>niveau piézométrique</u> est l'altitude de la surface de l'eau d'une nappe d'eau souterraine lorsque celle-ci est en équilibre avec la pression atmosphérique.

L'eau circule toujours du niveau piézométrique le plus haut vers le niveau piézométrique le plus bas

Le niveau piézométrique se mesure dans des puits, forages ou piézomètres, ainsi que sur les zones d'affleurement de l'eau souterraine (sources, lac ou rivière en connexion avec la nappe).

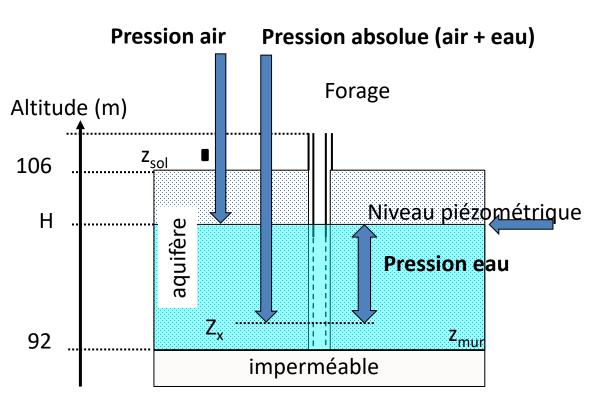


Coupe schématique

Mesure avec une sonde piézométrique manuelle

Coupe schématique

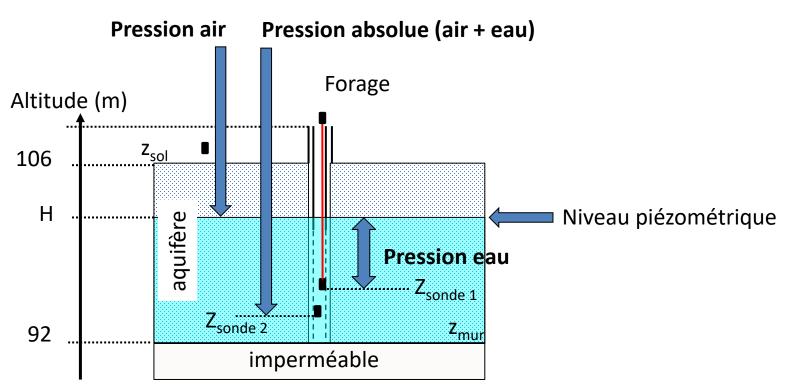
Niveau piézométrique


Profondeur de l'eau / repère : 5,85 m Hauteur du repère /sol : 0,30 m

Calculez le niveau piézométrique H, la puissance de l'aquifère (au forage), l'épaisseur de la zone saturée, l'épaisseur de la zone non saturée.

Les pressions

Coupe schématique


Pression eau = Pression absolue - Pression air

Niveau piézométrique

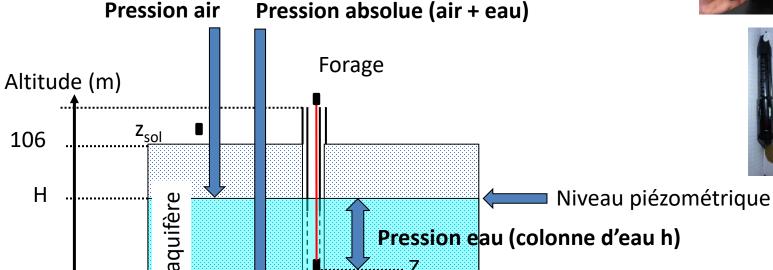
Mesure avec une sonde de pression

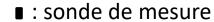
Coupe schématique

sonde de mesure de la pression de l'eau, avec un capillaire pour l'équilibre avec la pression de l'air

• : sonde de mesure

Sonde de pression relative ou sonde de pression absolue




Mesure avec une sonde de pression

Coupe schématique

Pression eau (colonne d'eau h)

Pression = ρ . g . h

92

Z_{sonde 2}

imperméable

$$H = Z_O + P / (\rho.g)$$

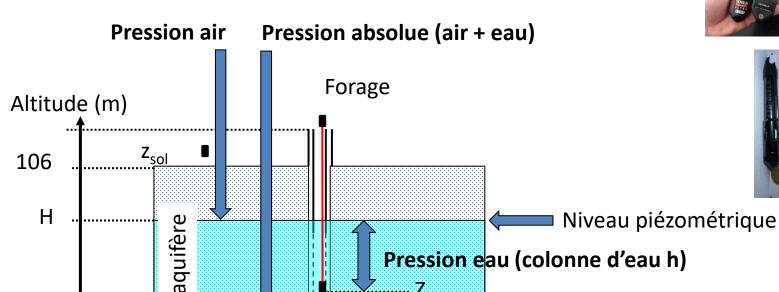
H le niveau piézométrique en mètre (référence par rapport au niveau de la mer),

Z la position de la sonde en mètre (référence par rapport au niveau de la mer),

P la pression en Pascal,

Z_{sonde 1}

Zmur


ρ la masse volumique de l'eau (en kg.m⁻³),

g l'accélération de la pesanteur (m.s-2),

h la hauteur de la colonne d'eau au-dessus de la sonde de mesure immergée (en mètre)

Mesure avec une sonde de pression

Coupe schématique

Z_{sonde 1}

Z_{mur}

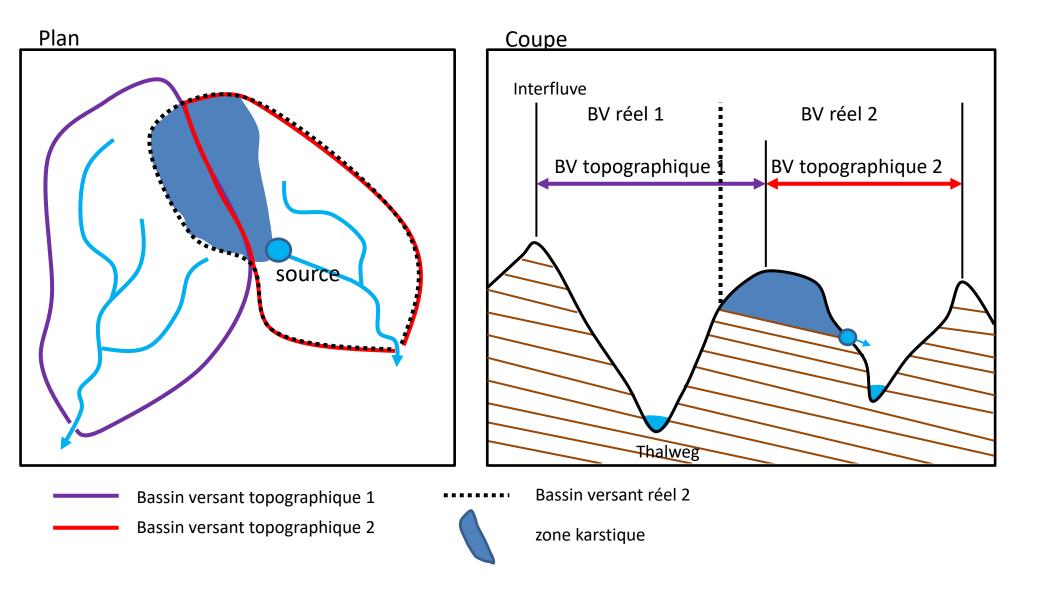
Pression eau (colonne d'eau h)

■ : sonde de mesure

Pression = ρ . g . h

92

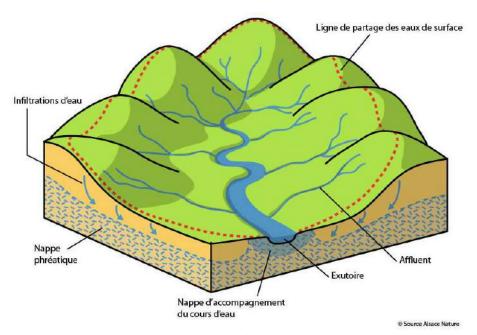
Z_{sonde 2}

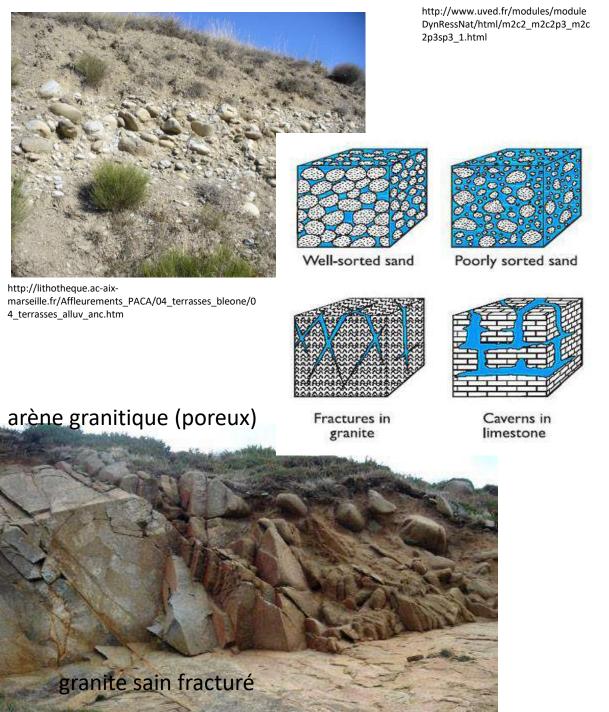

imperméable

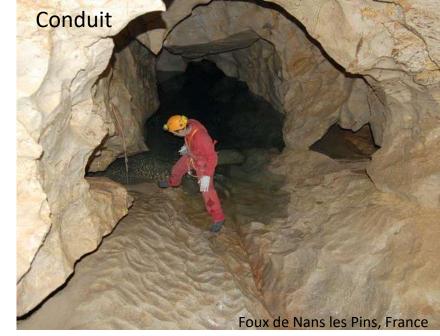
$$H = Z_O + P / (\rho . g)$$

Ecrivez l'expression du niveau piézométrique :

- En utilisant la sonde de mesure n°1 (pression relative)
- En utilisant la sonde de mesure n°2 (pression absolue)


Bassins versants topographiques (ou hydrologique) / bassins versants réels (hydrogéologiques)


Bilan hydrologique


Domaine d'étude : bassin versant, infrastructure (parking...), compartiment du cycle de l'eau...

Entrées = Sorties +/- Variations de stock

http://www.syribt.fr/notre-territoire/definition/

Karst

Pourquoi les vides karstiques existent-ils?

Dissolution of carbonate minerals in the presence of CO₂ proceeds, according to the following stoichiometric equations:

$$CO_2 + H_2O \leftrightarrow H_2CO_3$$
 (1)

$$H_2CO_3 \leftrightarrow HCO_3^- + H^+$$
 (2)

$$CaCO_3 \leftrightarrow Ca^{2+} + CO_3^{2-}$$
 (3)

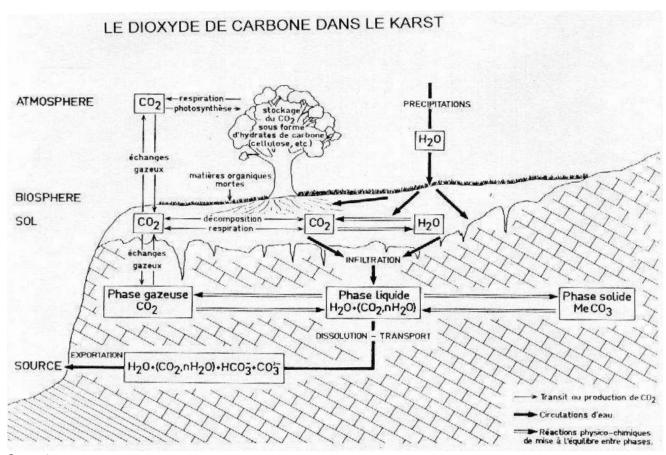
$$CO_3^{2-} + H^+ \leftrightarrow HCO_3^- \tag{4}$$

The solubility product corresponding to reaction 3 is quite small. However, because the carbonate ion (CO_3^{2-}) is "removed" by protonation (eq 4), dissolution of carbonate minerals can proceed to a significant extent, depending on the quantity of carbonic acid that is available and delivers protons (eq 2). Equations 1–4 can be summarized by:

$$CaCO_3 + CO_2 + H_2O \leftrightarrow Ca^{2+} + 2HCO_3^-$$
 (5)

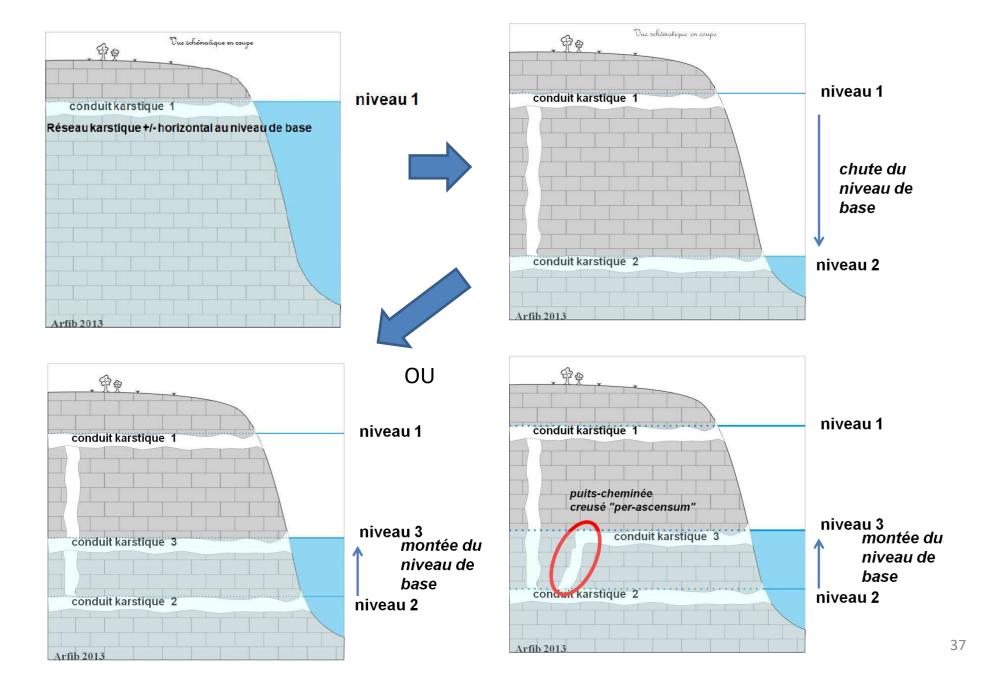
Dissolution: $CaCO_3 + H_2O + CO_2 \rightarrow Ca^{2+} + 2 HCO_3^{-1}$

Précipitation : $CaCO_3 + H_2O + CO_2 \leftarrow Ca^{2+} + 2 HCO_3^{-1}$


→ Karstification = dissolution du carbonate de calcium par une eau acide Nécessite du CO₂ et un écoulement

Pourquoi les vides karstiques existent-ils? Dissolution / Précipitation

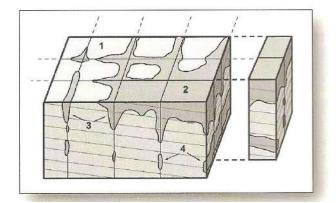
L'origine du CO₂? → l'activité biologique dans le sol


- Une pression partielle en CO₂ x100 dans le sol
- Déplacement du CO₂ dans l'eau (forme dissoute) et sous forme gazeuse (écoulement diphasique)

4 à 8% CO₂ gaz dans le sol

Autre origine: H₂S ou CO₂ profond

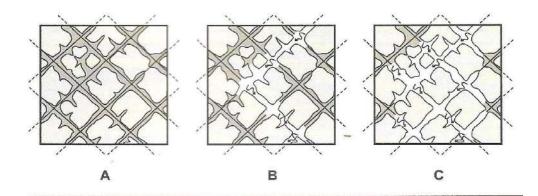
Niveau de développement des conduits karstiques : influence des variations du niveau de base



Pourquoi les vides karstiques existent-ils?

Un nouveau processus : la fantômisation

- concept nouveau, développé dans les années 2000 (Quinif)
- un mode de formation des vides en 2 temps, déconnectés temporellement
- → Formation d'un réseau karstique anastomosé, de type labyrinthe


1- Altération du calcaire en place avec un très faible gradient hydraulique, formant un milieu poreux isovolumique : le fantôme

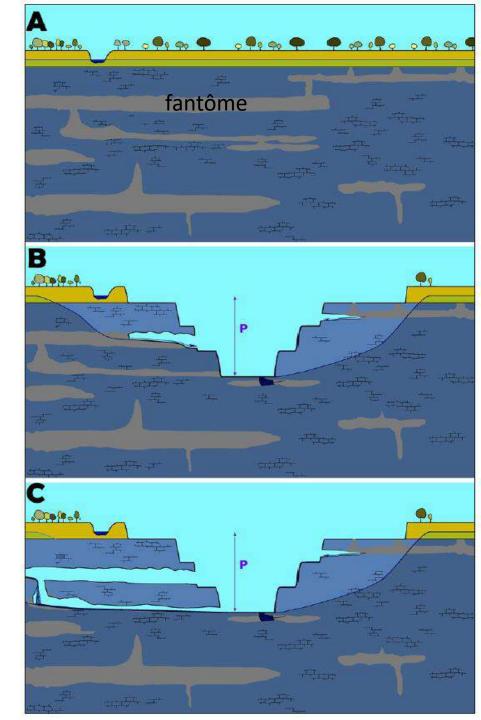
colmatées par le fantôme.

Bloc-diagramme schématique montrant les différents types de fantômes. La roche saine (1) est parcourue de nombreuses discontinuités (fractures, joints de strates) qui sont exploitées préférentiellement par l'altération. Dans les parties fantômisées, on distingue les altérations en masse (2), en poches ou en couloir (3) et les pseudoendokarsts (4) qui sont caractérisés par la présence d'un toit calcaire.

2- Lorsque le niveau de base varie, un fort gradient hydraulique se met en place qui provoque le soutirage du fantôme et l'export des matériaux poreux

d'énergie potentielle (courant), les circulations ne peuvent évacuer l'altérite (A). Puis, l'apparition d'un gradient hydraulique permet la mise en place d'une circulation et l'évidemment des conduits par érosion régressive (B). Progressivement, le maillage tectonique sur lequel s'était calée l'altération se dessine et laisse apparaître un labyrinthe de galeries (C). Les parties trop éloignées des principales circulations resteront

Plan schématique d'un pseudo-endokarst. Tant qu'il n'y a pas assez


Fantômisation

Exemple extrait de Quinif et al 2014., carrière de Nocarcentre (Belgique)

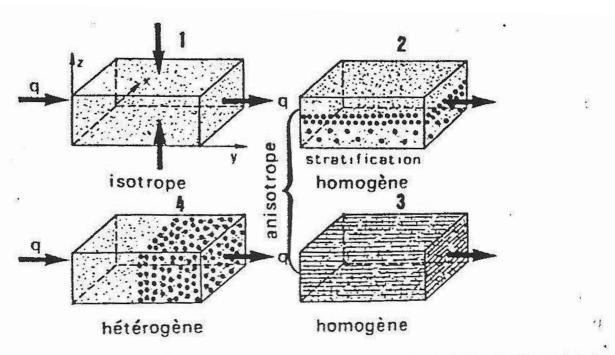
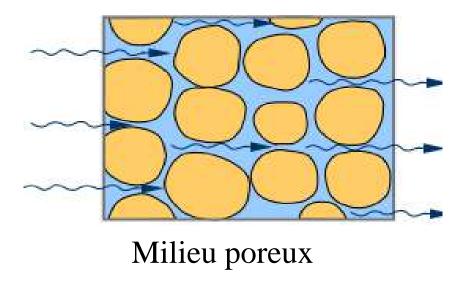
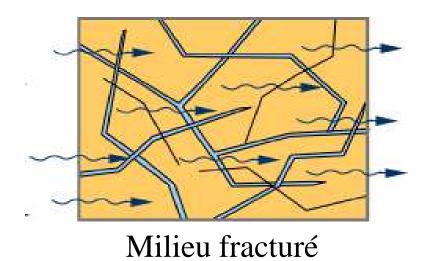
1- Altération isovolumique : karstogénèse par fantômisation

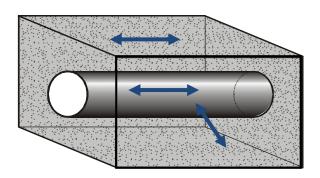
2- Gradient hydraulique fort : spéléogénèse. Evacuation des matériaux meubles (le fantôme) et formation d'un vide de grande dimension

3- Gradient hydraulique fort : évolution rapide à l'échelle humaine (formation du vide de grande dimension en quelques mois-années)

VER Volume Elémentaire Représentatif.

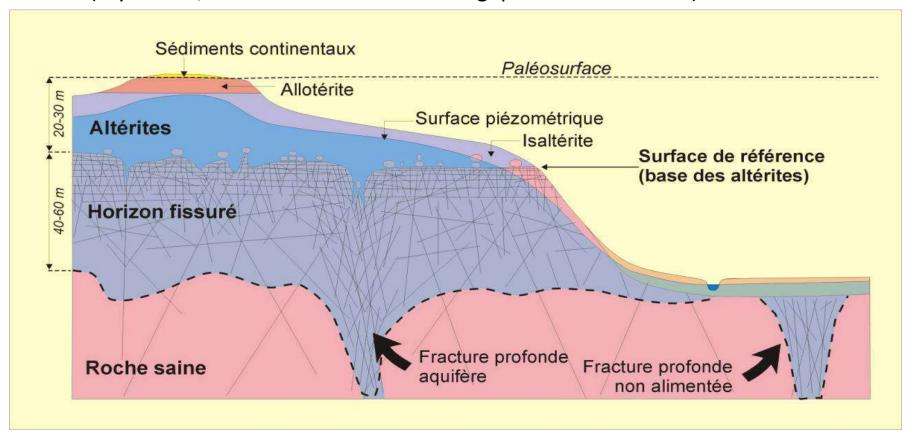
Le VER est un volume d'aquifère qui est représentatif de la propriété moyenne d'une plus grande zone. Il doit être suffisamment grand pour contenir un grand nombre de pores, de façon que l'on puisse y définir une propriété moyenne globale, avec l'assurance que l'effet de fluctuation d'un pore à l'autre sera négligeable. Il doit être suffisamment petit pour pouvoir faire une mesure sur ce volume.

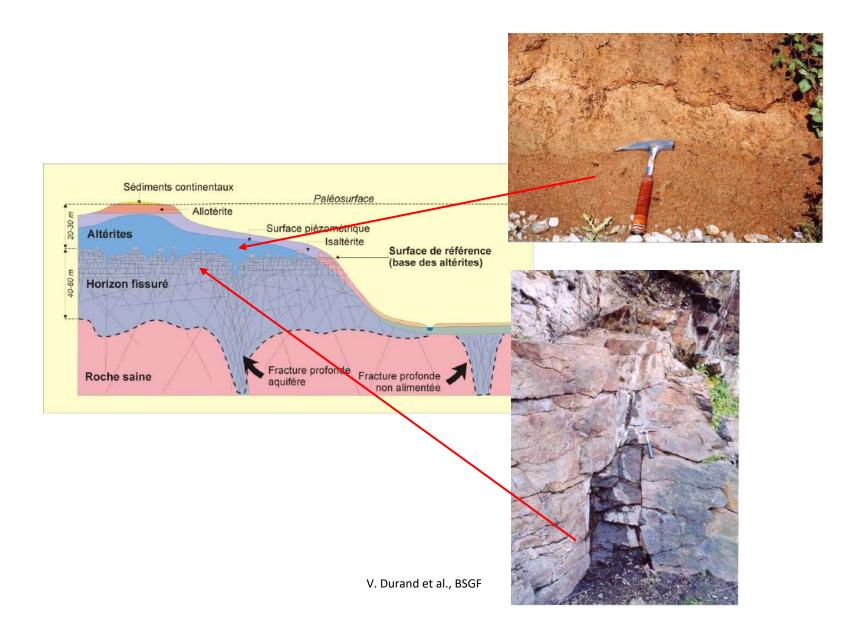




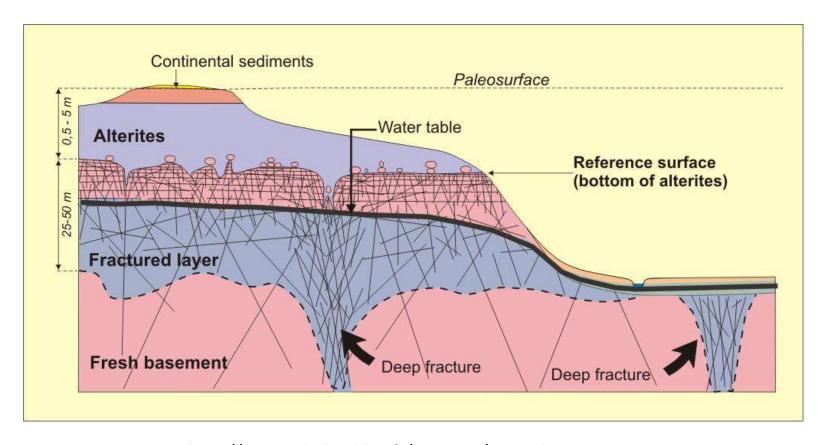

Figure 37 - Isotropie (1) et anisotropie (2, 3, 4). Homogénéité (2 et 3) et hétérogénéité (4).

40

Les grands types d'aquifères

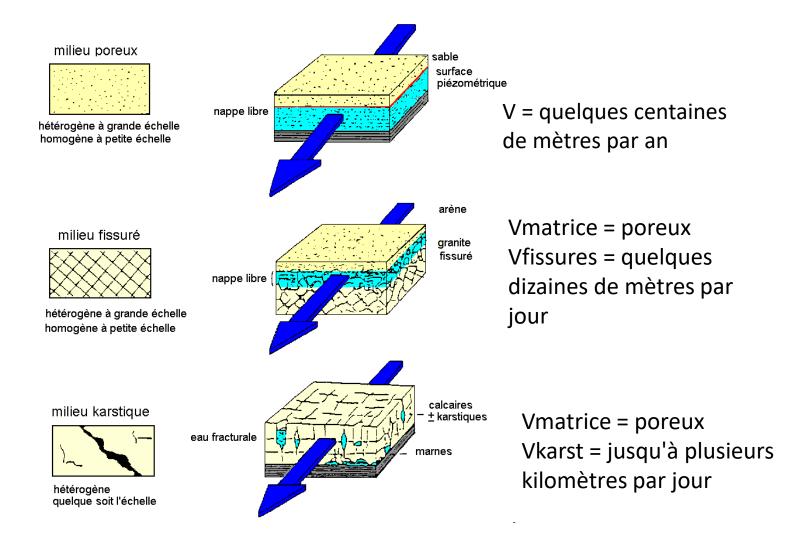


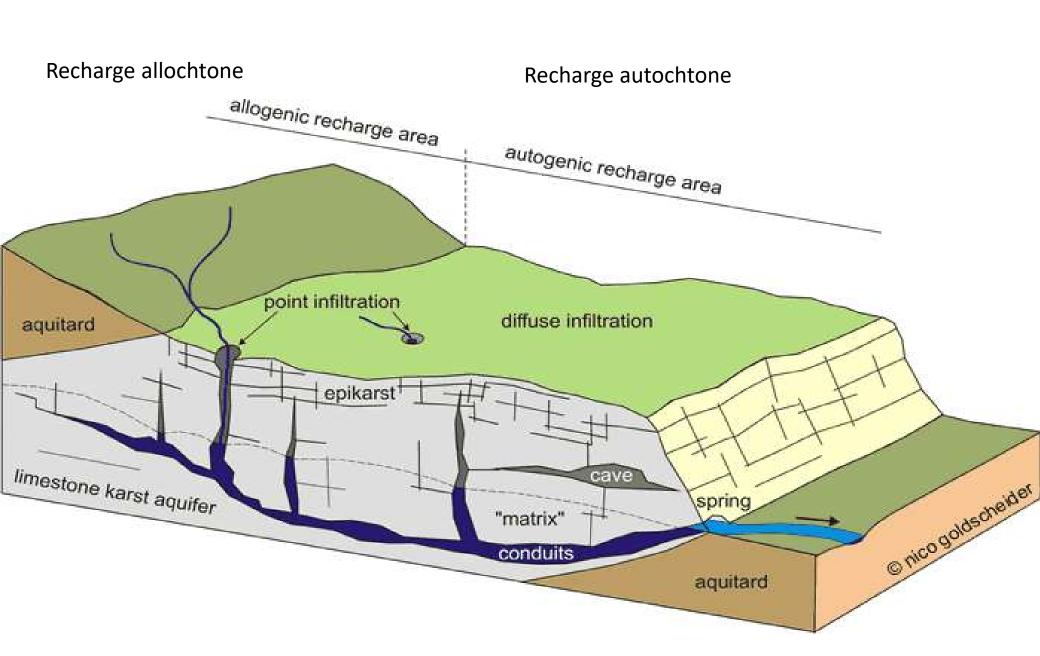




Milieu karstique

Schéma conceptuel stratiforme d'un aquifère de socle (Wyns et al, Bulletin de la Société Géologique de France 2004)

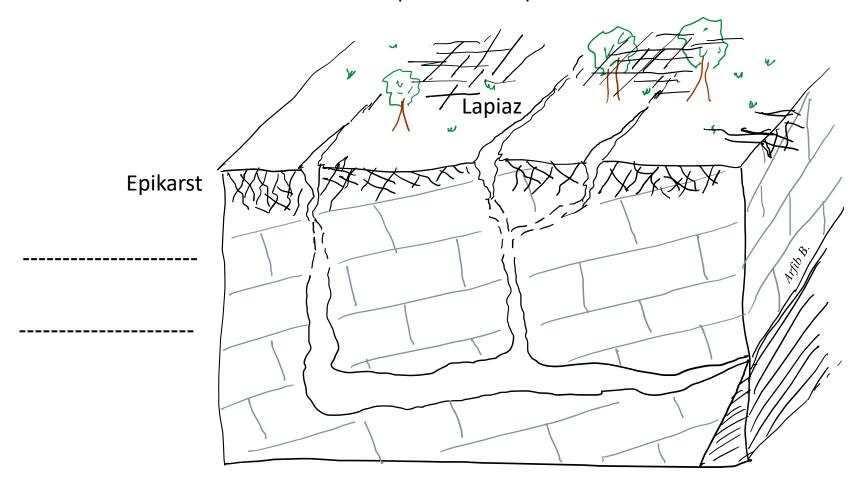




http://jcmarechal.unblog.fr/category/vertical-anisotropy-of-permeability/

3 grands types d'aquifères (schéma à modifier en cours)

L'aquifère karstique



Le Ragas de Dardennes Un gouffre, une source temporaire, un piézomètre, un exutoire de trop-plein lors des mises en charge du karst

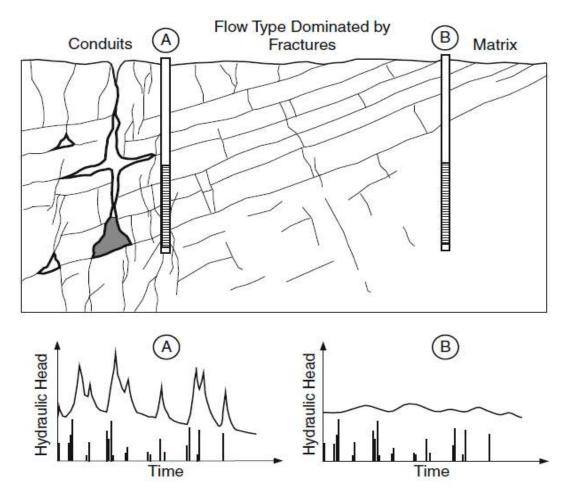
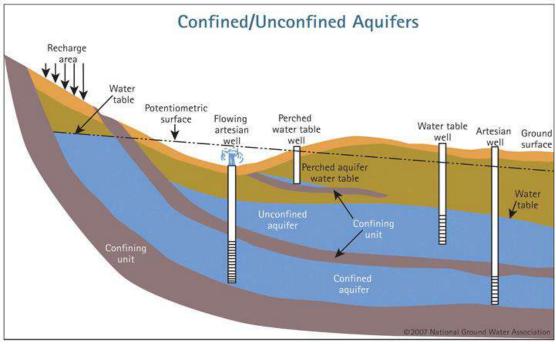

Le lien matrice-conduit en aquifère karstique

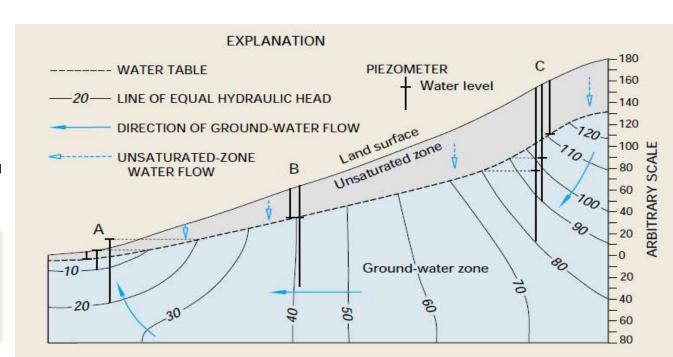
Table 5.11 Principal differences between single-, double- and triple-porosity aquifers. Most karst aquifers have triple-porosity characteristics Reproduced from Worthington, S. R. H., and Ford, D. C., Chemical hydrogeology of the carbonate bedrock at Smithville. Smithville Phase IV Bedrock Remediation Program. Ministry of the Environment, Ontario, 2001

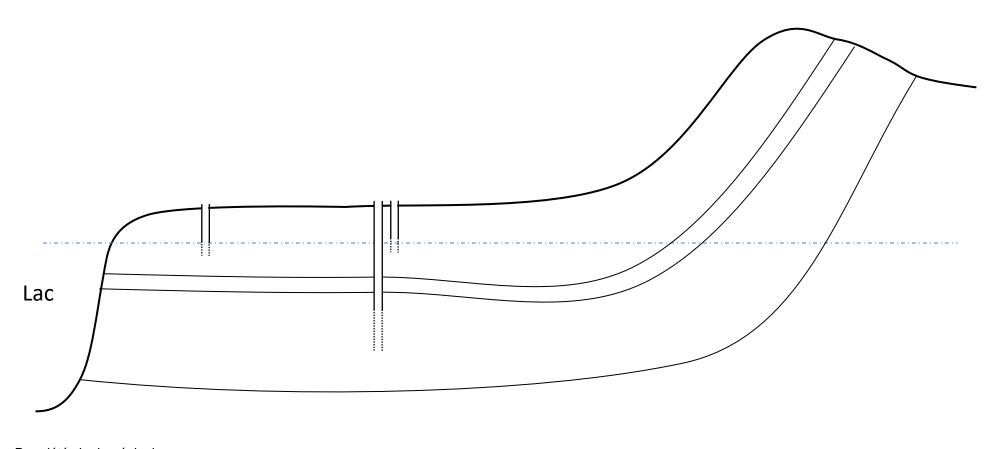
Parameter	Aquifer type				
	Single porosity (porous medium)	Double porosity	Triple porosity (karst)		
Flow components	Matrix	Matrix	Matrix		
		Fracture	Fracture		
			Channel		
Flow laws	Darcy	Darcy	Darcy		
		Hagen-Poiseulle	Hagen- Poiseuille		
			Darcy-Weisbach		
Flow modes	Laminar	Laminar	Laminar		
			Turbulent		
Flow lines are	Parallel	Mostly parallel	Convergent to channels		


Variations de niveaux d'eau en fonction des connexions sur des zones très transmissives

Extrait de Kresic et Stevanovic, Groundwater hydrology of springs, 2010

FIGURE 5–48 Dependence of the hydraulic head measured in monitoring wells on different types of effective porosity (specific yield) in karst aquifers: A, rapid rise of the hydraulic head after major recharge events in portions of the aquifer with large conduits and no significant storage in the matrix; B, delayed and dampened response of aquifer matrix. Flow dominated by fractures may include any combination of these two extremes. (From Kresic, 2007a; copyright Francis & Taylor, reprinted with permission.)


	Milieu				
	Poreux	Fissuré	Karstique		
Représentation schématique					
Origine de la porosité et de la perméabilité					
Perméabilité					
Structure					
Moyens d'étude					
Particularités					



http://www.ngwa.org/fundamentals/hydrology/pages/unconfined-or-water-table-aquifers.aspx

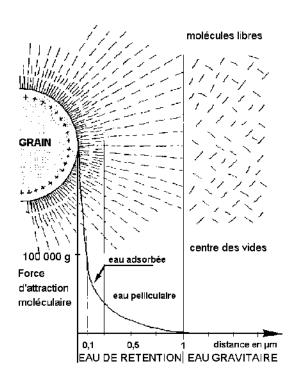
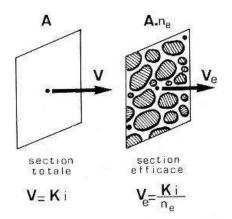
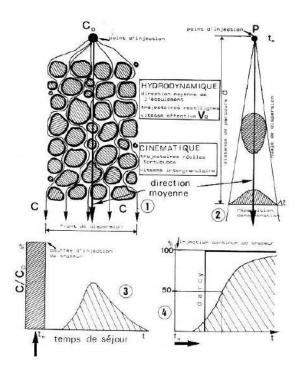

Winter T.C., Harvey J.W., Franke O.L. (1998) - Ground Water and Surface Water A Single Resource. U.S. Geological Survey Circular 1139, Denver, Colorado.

Figure A–3. If the distribution of hydraulic head in vertical section is known from nested piezometer data, zones of downward, lateral, and upward components of ground-water flow can be determined.





Propriétés hydrogéologiques

Castany

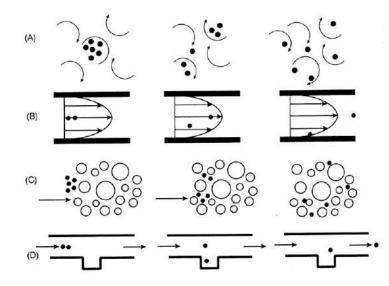
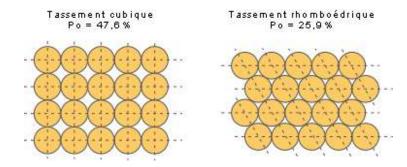



Tableau 13 - Classification granulométrique des roches meubles

Désignations Caillou, pierre, bloc		ons	Diamètres des grains mm		
		e, bloc	supérieur à 16		
	Gravier, gravillon		16 à 2		
Tamis		gros	2 à 0,5		
	Sable	moyen	0,5 à 0,25		
		fin	0,25 à 0,06		
Silt		W. 25 - 17	0,06 à 0,002		
Argile		11.2	plus petit que 0,02		

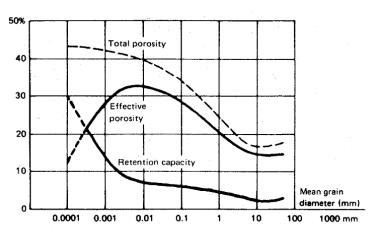


Figure 1.16 Composantes de la porosité en fonction de la granulométrie (de Marsily, 1986)

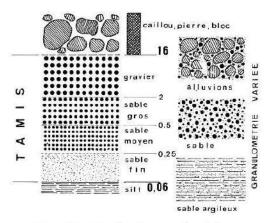


Figure 34 - Classification granulométrique.

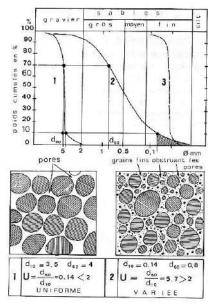
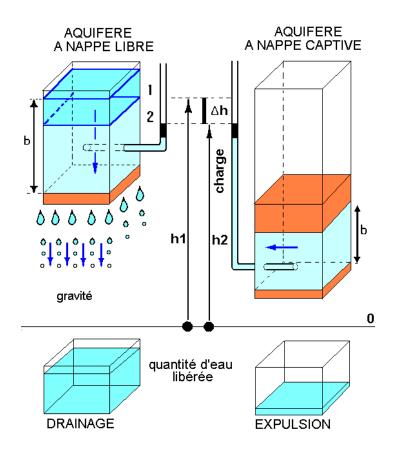



Figure 36 - Qualification d'un matériau meuble par sa granulométrie. Position et pente de la courbe granulométrique. Granulométrie uniforme et variée. Signification du diamètre efficace 4 10. 1, gravier à granulométrie uniforme ; 2, gravier sableux à granulométrie variée ; 3, sable fin à granulométrie uniforme.

Coefficient de perméabilité ou conductivité hydraulique

Coefficient d'emmagasinement et porosité de drainage

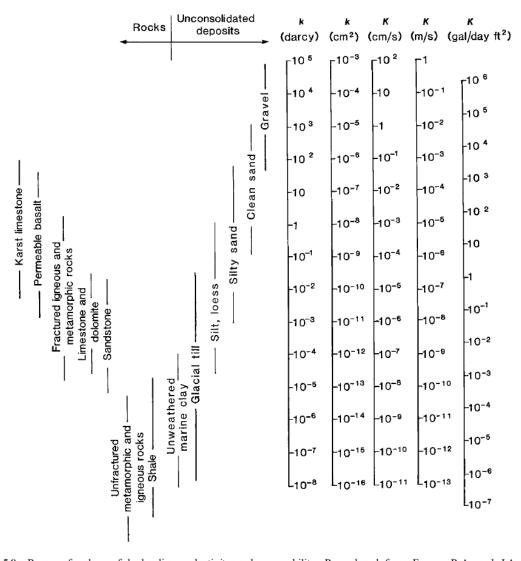


Figure 5.8 Range of values of hydraulic conductivity and permeability. Reproduced from Freeze, R.A. and J.A. Cherry, Groundwater, p. $604 \otimes 1979$ Prentice Hall.

Henry Darcy (1803-1858)

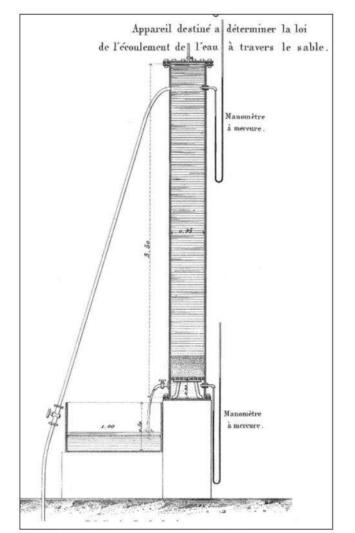


Figure 4. Darcy's original sand column apparatus (Darcy 1856, Plate 24, Figure 3).

LES

FONTAINES PUBLIQUES

DE LA VILLE DE DIJON

EXPOSITION ET APPLICATION

DES PRINCIPES A SUIVRE ET DES FORMULES A EMPLOYER

DANS LES QUESTIONS

DISTRIBUTION D'EAU

Arsaica manitá

PAR UN APPENDICE RELATIF AUX POURNITURES D'EAU DE PLUSIEURS VILLES

AU FILTRAGE DES EAUX

A LA PARHICATION DES TUYACA DE FONIS. DE CLUSID, SE TOLE ET PE LITURE

PAR

HENRY DARCY

INSPECIEUR GÉNÉRAL DES POSTA ET CIMPASÉES.

La b'unne qualità des caux d'uni une des choics qui entribecat ples à la sandi des cinegens d'une villa, in s' a rice à qual les magteris siera più or directiq qui mottenir la activatori derelle qui arreà à hobicat mammen des hannes et des saineurs, et à remolière si accident per l'arquis eres caux pourraismi éton attivice, aixi dans le conflicted, et expulsa eres caux pourraismi éton attivice, aixi dans le des fanticles, des prisères, des relineurs de des contint, soit d'une l lies eta dea de mamerites releve qu'en en divire, aixi calab dans le pulaire du aute mamerites releve qu'en en divire, aixi calab dans le pu-

De Scanne, Hist, de l'Acadimie regule des seientes, 1723, y. 831.

PARIS

VICTOR DALMONT, ÉDITEUR

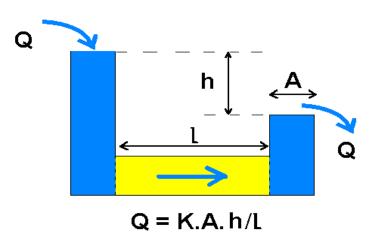
furcesteur de Canifian-Scenty et Ver Dalmont,

LIBRAIBE DES CORPS LEPÉRIAUX DES PONTS ET CHAUSSÉES ET DES HINES

1856

Ecoulement dans un aquifère : modèle simple

Loi de Darcy
$$Q = K \cdot A \cdot \frac{\Delta h}{L}$$


K : coefficient de perméabilité (m/s)

T: transmissivité (m²/s)

e : épaisseur mouillée

 $T = K \cdot e$

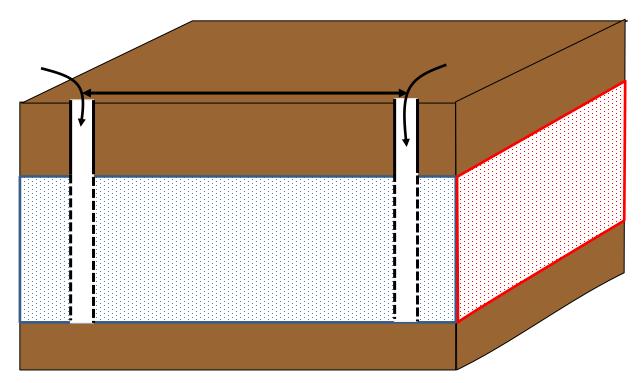
- * Expérience de Darcy à charge constante
- * Similitude avec le milieu naturel

5.4- Loi de Darcy

5.4.2- La Loi de Darcy en milieu naturel

Écoulement dans un aquifère : modèle simple pour un aquifère homogène isotrope

Loi de Darcy


$$Q = K . A. \frac{\Delta h}{L}$$

K : coefficient de perméabilité (m/s)

A : section perpendiculaire à l'écoulement

(sur une ligne de courant)

 $i = \frac{\Delta h}{L}$: gradient de charge hydraulique

Dessiner le schéma

Equation de la diffusivité

→ équation de l'écoulement d'une nappe d'eau souterraine en nappe libre

$$\frac{\partial}{\partial x} \left[\int_{\sigma}^{h} K_{xx} dz \cdot \frac{\partial h}{\partial x} \right] + \frac{\partial}{\partial y} \left[\int_{\sigma}^{h} K_{yy} dz \cdot \frac{\partial h}{\partial y} \right] = \omega_{d} \frac{\partial h}{\partial t} + Q$$

x, y, z : directions de l'espace

K : Coefficient de perméabilité suivant la direction

sigma: niveau du mur de l'aquifère (h-sigma=épaisseur mouillée)

 ω_d : porosité de drainage (ou cinématique)

extrait de G. de

Q: terme source

h, t: niveau d'eau et temps (variables)

Si K_{xx} et K_{yy} sont constants sur toute verticale, on peut faire disparaître l'intégrale sur z:

$$\frac{\partial}{\partial x} \left[K_{xx} (h - \sigma) \frac{\partial h}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_{yy} (h - \sigma) \frac{\partial h}{\partial y} \right] = \omega_d \frac{\partial h}{\partial t} + Q$$

En simplifiant, pour une faible variation de niveau d'eau sur la hauteur totale, la transmissivité (T=K.e) est constante, et pour une transmissivité isotrope et constante :

$$\nabla^2 h = \frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} = \frac{\omega_d}{T} \frac{\partial h}{\partial t} + \frac{Q}{T}$$
 extrait de G. de Marsily, 1989 (5.1.4)

équation aux dérivées partielles l'inéaire de second ordre de type parabolique, analogue à l'équation de la chaleur. ∇^2 est l'opérateur Laplacien, défini ci-dessus à deux dimensions.

Equation de la diffusivité

→ équation de l'écoulement d'une nappe d'eau souterraine en nappe captive

$$\operatorname{div}\left(\overline{\overline{K}}\operatorname{grad}\,h\right) = S_s \frac{\partial h}{\partial t} + q$$

extrait de G. de Marsily, 1989

x, y, z : directions de l'espace

K : Tenseur du Coefficient de perméabilité

div : divergent (notation mathématique représentant la variation dans les différentes directions de

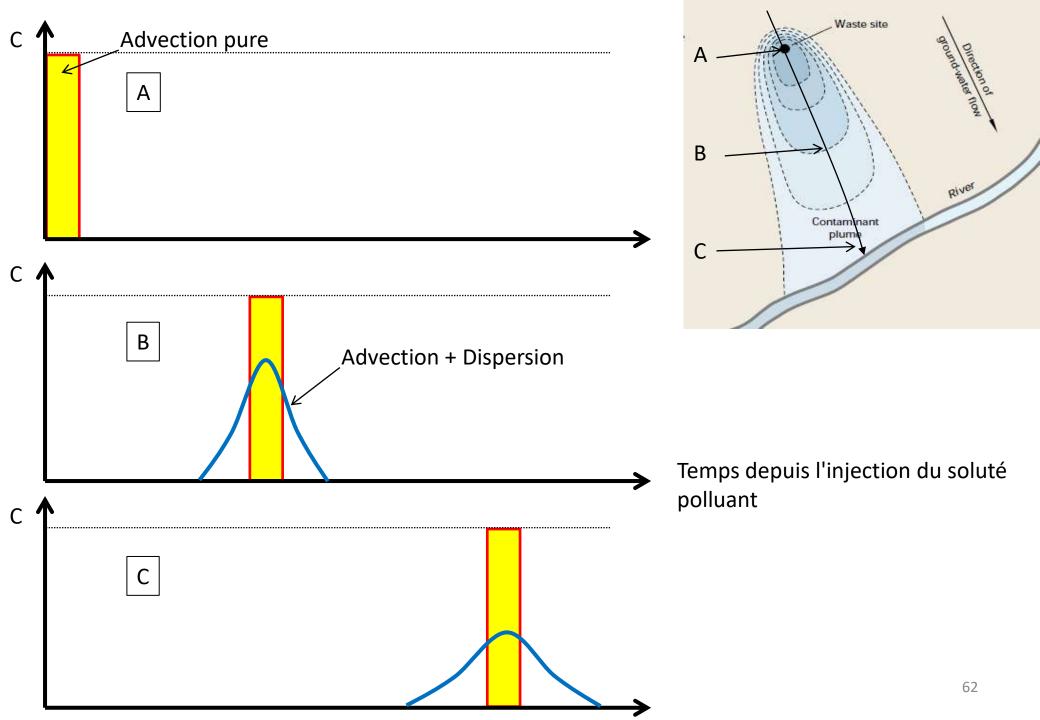
l'espace)

grad: gradient

S: coefficient d'emmagasinement (-)

Ss: coefficient d'emmagasinement spécifique (Ss = S / e)

q, Q: terme source


h, t: niveau d'eau et temps (variables)

T/S = diffusivité de l'aquifère

En simplifiant, pour e = constant, transmissivité (T=K.e) est constante, et une transmissivité isotrope et constante :

$$\operatorname{div}\left(\overline{\overline{T}} \operatorname{grad} h\right) = S \frac{\partial h}{\partial t} + Q$$

extrait de G. de Marsily, 1989

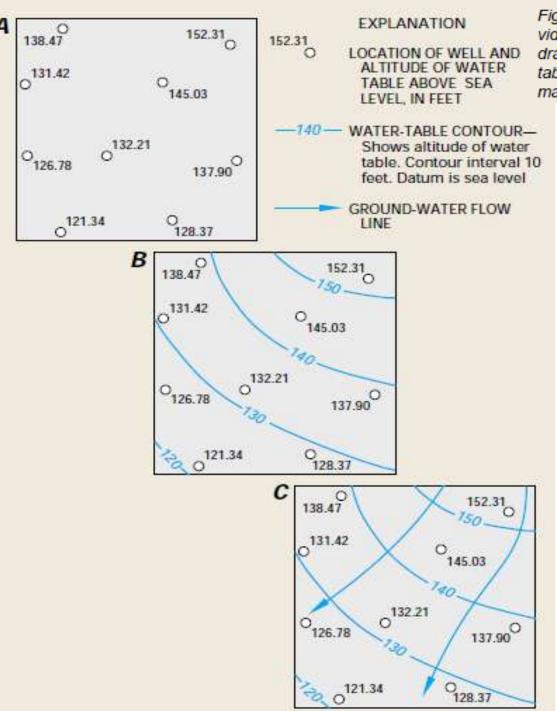
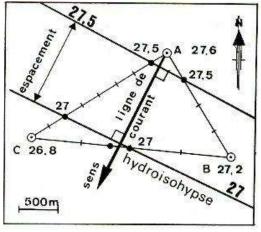
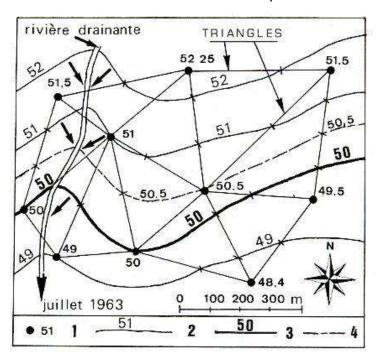
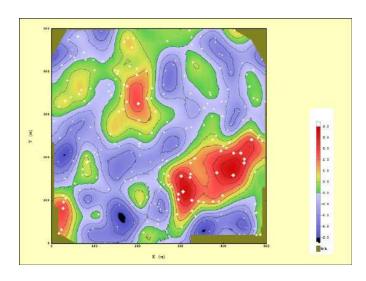



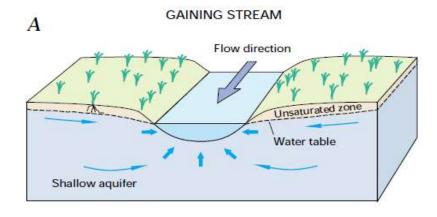
Figure A–2. Using known altitudes of the water table at individual wells (A), contour maps of the water-table surface can be drawn (B), and directions of ground-water flow along the water table can be determined (C) because flow usually is approximately perpendicular to the contours.


Winter T.C., Harvey J.W., Franke O.L. (1998) - Ground Water and Surface Water A Single Resource. U.S. Geological Survey Circular 1139, Denver, Colorado. 3

Tracé des courbes hydro-isohypses

Interpolation linéaire




Castany

Interpolation par méthode géostatistique

Le **krigeage** est, en géostatistique, la méthode d'estimation linéaire garantissant le minimum de variance. Le krigeage réalise l'interpolation spatiale d'une variable régionalisée par calcul de l'espérance mathématique d'une variable aléatoire, utilisant l'interprétation et la modélisation du variogramme expérimental. C'est le meilleur estimateur linéaire nonbiaisé; il se fonde sur une méthode objective. Il tient compte non seulement de la distance entre les données et le point d'estimation, mais également des distances entre les données deux-à-deux. (wikipedia)

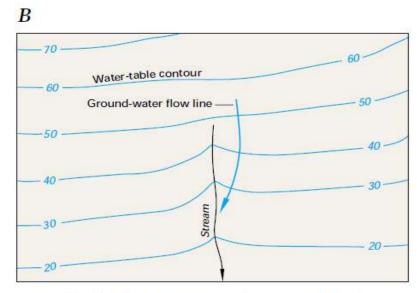
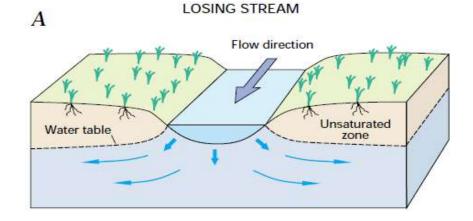
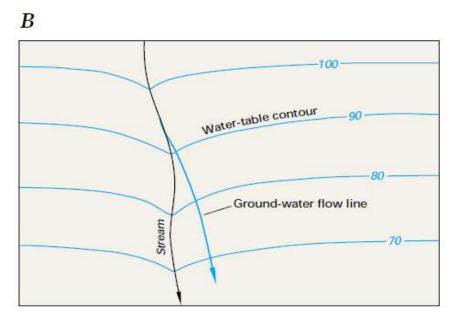
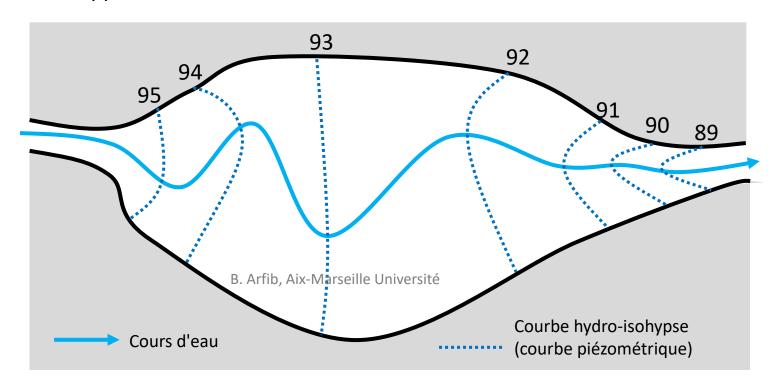
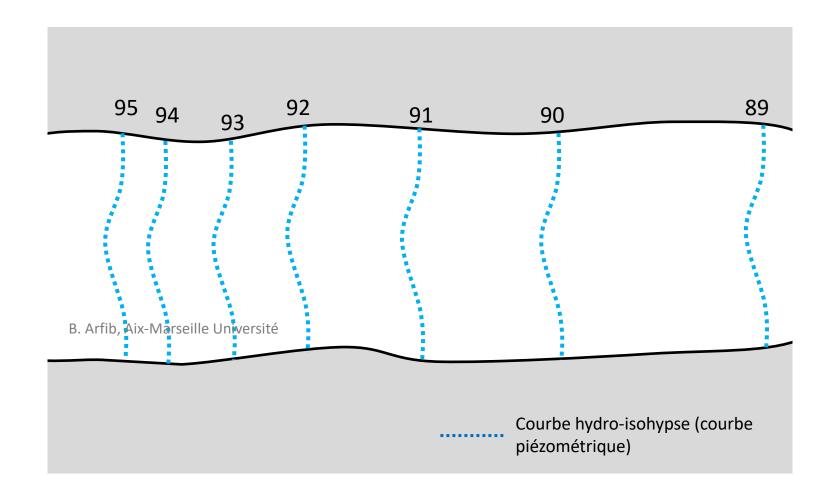



Figure 8. Gaining streams receive water from the ground-water system (A). This can be determined from water-table contour maps because the contour lines point in the upstream direction where they cross the stream (B).


Figure 9. Losing streams lose water to the ground-water system (A). This can be determined from water-table contour maps because the contour lines point in the downstream direction where they cross the stream (B).

Nappe libre alluviale, en relation avec la rivière

Rivière = Limite à charge imposée (condition de Dirichlet)

Limite à flux imposé (condition de Neumann) Cas particulier : flux nul

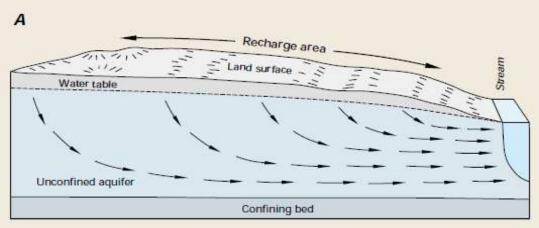
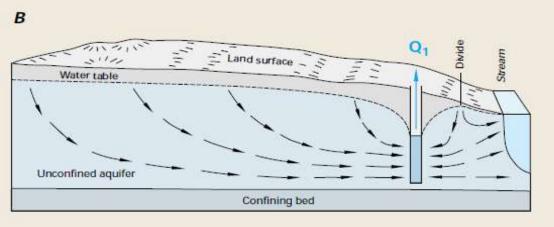
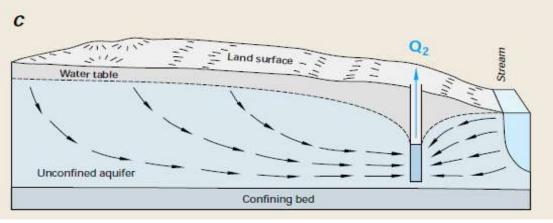
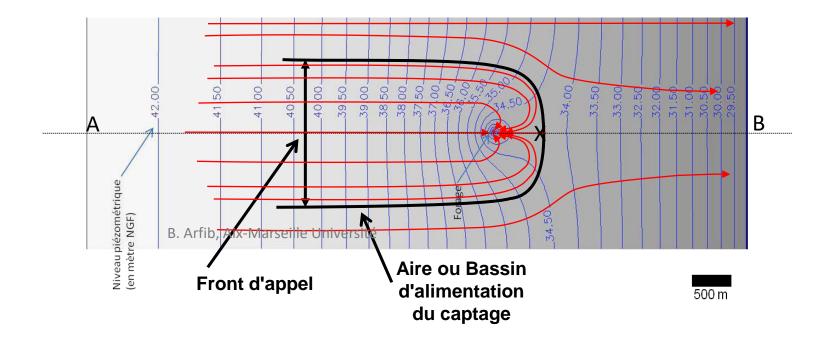





Figure C–1. In a schematic hydrologic setting where ground water discharges to a stream under natural conditions (A), placement of a well pumping at a rate (Q₁) near the stream will intercept part of the ground water that would have discharged to the stream (B). If the well is pumped at an even greater rate (Q₂), it can intercept additional water that would have discharged to the stream in the vicinity of the well and can draw water from the stream to the well (C).

Winter T.C., Harvey J.W., Franke O.L. (1998) - Ground Water and Surface Water A Single Resource. U.S. Geological Survey Circular 1139, Denver, Colorado.

DISCONNECTED STREAM

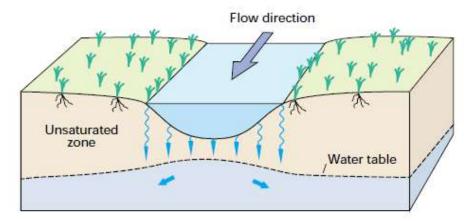


Figure 10. Disconnected streams are separated from the ground-water system by an unsaturated zone.

BANK STORAGE

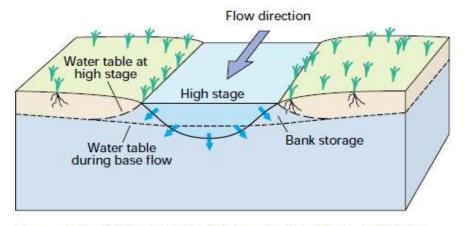
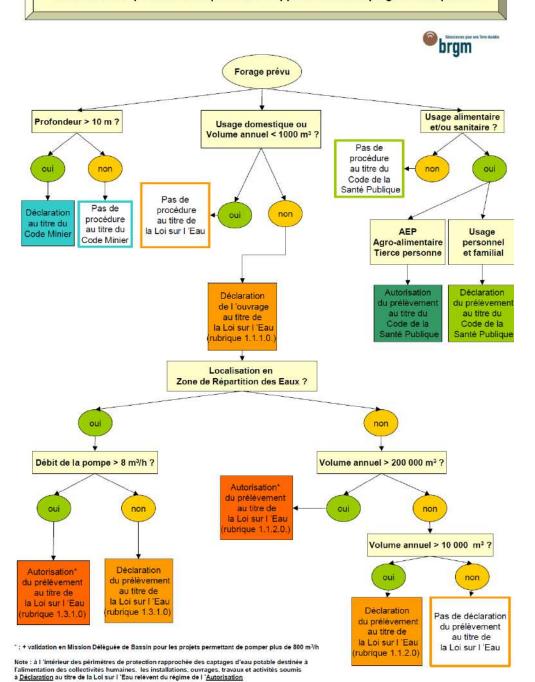


Figure 11. If stream levels rise higher than adjacent ground-water levels, stream water moves into the streambanks as bank storage.

Winter T.C., Harvey J.W., Franke O.L. (1998) - Ground Water and Surface Water A Single Resource. U.S. Geological Survey Circular 1139, Denver, Colorado.

8- Etablissement des périmètres de protection autour des forages AEP


- 8.1. Règlementation générale : procédure AEP, Périmètres de protection, forages
- 8.2- Les périmètres de protection
- 8.3- Objectif des « études préalable » + notions de vulnérabilité des eaux souterraines
- 8.4. Méthode de Grubb (Wyssling)
- **8.5. Cas particulier du karst (**suivi des sources, traçages, PAPRIKA)

Une présentation pdf complète à télécharger : www.karsteau.fr

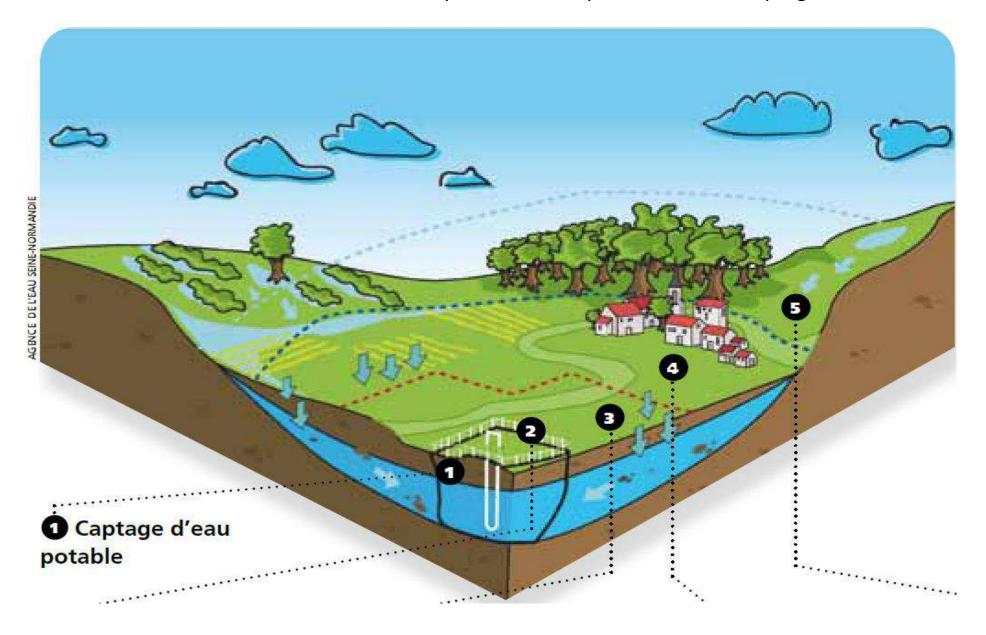
Objectif de cette partie :

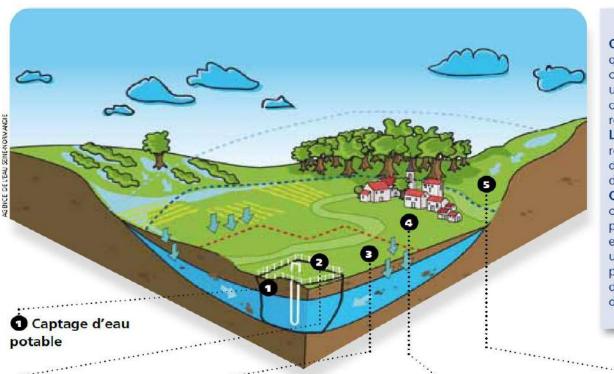
- Qu'est ce qu'une zone de répartition des eaux (ZRE), un périmètre de protection Immédiate, Rapprochée ou éloignée (PPI, PPR, PPE)?
- Qu'est ce qu'un captage à usage domestique ?
- Comment obtient-on l'autorisation de faire un forage?
- Peut-on faire un forage n'importe comment?
- Comment définit-on la vulnérabilité des eaux souterraines et d'un captage?
- Comment protège t-on un captage pour l'AEP?

Code Minier Code de la Santé Publique Code de l'Environnement (Loi sur l'Eau) Schéma des différentes procédures applicables aux forages et aux prélèvements en dehors des périmètres de protection rapprochée des captages d'eau potable

L'Arrêté Forage de 2003, Modifié par l'arrêté du 7 août 2006 paru le 24 septembre 2006

L'arrêté interministériel « forages » publié le 11 septembre 2003, contient les règles techniques minimales permettant d'exécuter un ouvrage soumis à déclaration ou autorisation au titre de l'article L. 214-3 du code de l'environnement dans le respect de la protection des eaux souterraines


Un guide existe pour une lecture plus aisée


GUIDE D'APPLICATION DE L'ARRÊTÉ INTERMINISTÉRIEL
DU 11 SEPTEMBRE 2003
RELATIF À LA RUBRIQUE 1.1.0 DE LA NOMENCLATURE EAU

Sondage, forage, création de puits ou d'ouvrage souterrain non domestique exécuté en vue de la recherche, de la surveillance ou d'un prélèvement d'eau souterraine

Protection de la ressource en eau : les 3 périmètres de protection d'un captage

Protection de la ressource en eau

On parle de pollution ponctuelle quand une source de pollution localisée en un point précis provoque une contamination (bactériologique ou par des hydrocarbures...) de la ressource.

Les pollutions accidentelles font référence par exemple à des erreurs de manipulation ou des défaillances de transport. Elles sont localisées.

Quant aux pollutions diffuses, leur origine ne peut être localisée en un point précis, ni concerner un acteur en particulier. Elles sont réparties sur une surface importante. Les résidus polluants sont entraînés par les eaux de ruissellement ou par percolation dans le sol et le sous-sol.

2 Le périmètre de protection immédiate

est destiné à protéger les ouvrages du captage. Il doit être clôturé et est généralement enherbé. La collectivité distributrice de l'eau en est propriétaire. Aucune activité autre que l'entretien mécanique et l'entretien de l'ouvrage n'y est autorisée. 3 Le périmètre de protection rapprochée

est défini pour protéger le captage des migrations de substances polluantes. Il permet de préserver le captage des risques de pollutions accidentelles ou ponctuelles. Dans le cas de petits bassins versants, il permet aussi d'agir sur des pollutions diffuses. Les activités ou aménagements pouvant nuire à la qualité des eaux y sont réglementés ou interdits. 4 Le périmètre de protection éloignée

constitue une zone de vigilance particulière, vis-à-vis notamment des pollutions accidentelles pouvant avoir des conséquences sur la ressource. Les activités ou aménagements à l'intérieur de ce périmètre y sont souvent réglementés. L'application de la réglementation générale doit y être appliquée en toute rigueur, c'est-à-dire sans possibilité de dérogation.

G Le bassin d'alimentation de captage (BAC), aussi appelé aire d'alimentation de captage (AAC), désigne la surface du sol sur laquelle l'eau qui ruisselle et/ou s'infiltre alimente le captage.

> http://www.alterrebourgogne.fr/fileadmin/Alfresco/Eau/Guide_p rotection_captages_2011.pdf

Préconisation pour la délimitation des périmètres de protection rapprochée

(Guide technique Protection des captages d'eau – Acteurs et Stratégie. 2008)

Type d'aquifère ou de ressource	Petits captages gravitaires (montagne et piémont)	Nappe libre alluviale ou non	Nappe alluviale influencée Réalimentation induite	Nappe semi-captive peu profonde	Nappe captive profonde	Nappe de socle (Terrains profonds fissurés)	Eau superficielle		100
							Prises au fil de l'eau	Plans d'eau	Karst
Critères de dimensionnement	Débits, méthode du bilan d'eau	Piézométrie, pompages, vitesse, modèles	Piézométrie, pompages, vitesse d'écoulement, modèles, importance respective des apports d'eau superficielle et d'eau souterraine	Piézométrie,pompages, drainance, épaisseur de la couverture imperméable	Débit, rabattement, piézométrie	Géologie, géophysique, fracturation, pompage de longue durée	Vitesses du cours d'eau	Taille <mark>d</mark> u plan d'eau	Débits, limites géologiques, traçages, vitesses,
Paramètres de qualité, caractéristiques de la ressource captée	Température, conductivité, turbidité, bactériologie, nitrates	Nitrates, pesticides, (bactériologie)	Nitrates, micropollution, pesticides (bactériologie)	Potentiel redox, pH, NH4+, Fe, Mn, métaux	NH4, Fe, Mn, pH, métaux, sulfures	Nitrates (processus dénitrifiant éventuel), Fe, Mn, éléments traces métalliques	Paramètres organiques, température, nitrates, micropolluants organiques dont pesticides	Paramètres organiques, température, nitrates, micropolluants organiques dont pesticides	Turbidité, bactériologie, nitrates, pesticides
Zone d'étude	Bassin hydrogéologique ou topographique	Zone d'alimentation potentielle	Zone d'appel et bassin versant du cours d'eau	Zone d'appel	Recensement d'ouvrages dans un rayon de 2 km	Bassin versant topographique, limites géologiques	Bassin versant (étude globale) et zone proche du captage (étude détaillée)	Bassin versant du cours d'eau (étude globale) et cuvette de la retenue (étude détaillée)	Bassin versant théorique, limite imperméable, engouffrements
Extension de la protection rapprochée en amont du captage	Bassin versant en totalité ou de 150 à 400 m selon la vulnérabilité	Isochrone 50 jours	Isochrone 50 jours en nappe et 2 heures pour le cours d'eau	Zone d'appel ou isochrone 50 jours	PPR = PPI	Zone d'appel	2 heures pour un débit non dépassé 90 % du temps annuellement (ou pour le module)	Un secteur de berge ou auréole de terrain autour du plan d'eau	Quelques heures de temps de transfert + périmètre de protection satellites
Mesures complémentaires de protection des eaux distribuées	Aucun traitement, traitement Alou A2	Aucun traitement, traitement Al	Traitement A1 ou A3, détecteur d'alerte, stockage de secours, surveillance piézométrique	Traitement A1 ou A3, limitation du rabattement	Aucun traitement, traitement A1 ou A3, surveillance des forages voisins du captage, limitation du rabattement	Traitement A1 ou A2	Traitement A2 ou A3, stockage d'eau brute ou traitée, interconnexions station d'alerte (si zones urbanisées ou industrielles)	Traitement A2 ou A3, stockage d'eau brute ou traitée, interconnexions station d'alerte (si zones urbanisées ou industrielles)	Traitement A1, A2 ou A3, détection de la turbidité, stockage d'eau brute ou traitée, ressource de secours
Zone de vigilance	Bassin versant	Zone d'alimentation	Zone d'alimentation + élément du bassin versant du cours d'eau	Zone d'alimentation	Rayon de quelques km	Bassin versant ou bassin hydrogéologique connu	Bassin versant en partie ou en totalité	Bassin versant en partie ou en totalité parfois sans objet (grands lacs de montagne)	Bassin versant

30n coura

LIENS UTILES

Visiter:

- I. https://biologie-maroc.com
 - Télécharger des cours, TD, TP et examens résolus (PDF Gratuit)
- 2. https://biologie-maroc.com/shop/
 - Acheter des cahiers personnalisés + Lexiques et notions.
 - Trouver des cadeaux et accessoires pour biologistes et géologues.
 - Trouver des bourses et des écoles privées
- 3. https://biologie-maroc.com/emploi/
- Télécharger des exemples des CV, lettres de motivation, demandes de ...
- Trouver des offres d'emploi et de stage

