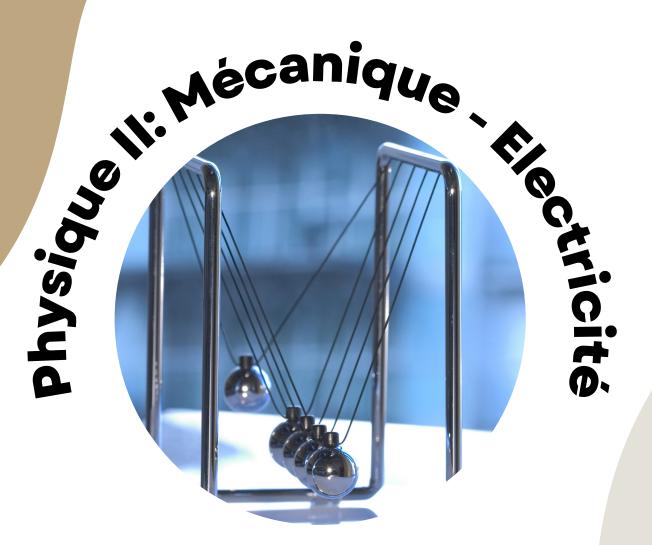
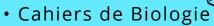
BIOLO E MAROC

www.biologie-maroc.com



SCIENCES DE LA VIE ET DE LA TERRE



- + Lexique
- Accessoires de Biologie

Visiter Biologie Maroc pour étudier et passer des QUIZ et QCM enligne et Télécharger TD, TP et Examens résolus.

- CV Lettres de motivation • Demandes...
- Offres d'emploi
- Offres de stage & PFE

(C)

CHAPITRE III : DYNAMIQUE DU POINT TRAVAIL, ENERGIE POTENTIELLE, ENERGIE CINETIQUE ET LOI DE CONSERVATION DE L'ENERGIE

1. TRAVAIL - PUISSANCE

1.1. Travail élémentaire

ightharpoonup Le travail élémentaire de la résultante des forces \vec{F} agissant sur une particule, dont le point d'application M subit un déplacement $d\vec{\ell}$, est par définition :

Ce travail est dit : travail moteur si dW > 0 et travail résistant si dW < 0.

1.2. Travail total

Le travail total produit par la force \vec{F} , lorsque la particule se déplace de $P_1(\overrightarrow{OP_1} = \vec{r_1})$ à $P_2(\overrightarrow{OP_2} = \vec{r_2})$, le long d'une trajectoire (C) est :

$$W_{P_1}^{P_2} = \int dW = \int_{(C)} \vec{F} . d\vec{\ell} = \int_{r_1}^{r_2} \vec{F} . d\vec{\ell}$$

 $d\vec{r} = d\vec{\ell}$ est le déplacement élémentaire, tel que :

- en coordonnées cartésiennes x,y,z :

$$d\vec{r} = d\vec{\ell} = dx \, \vec{e}_x + dy \, \vec{e}_y + dz \, \vec{e}_z$$

- en coordonnées polaires (r, θ) :

$$d\vec{r} = d\vec{\ell} = dr\,\vec{e}_r + rd\theta\,\vec{e}_\theta$$

- en coordonnées cylindriques (r, θ, z) :

$$d\vec{r} = d\vec{\ell} = dr \, \vec{e}_r + rd\theta \, \vec{e}_\theta + dz \, \vec{e}_z$$

En général, le travail total dépend de la trajectoire suivie par la particule. (dW n'est pas donc une différentielle totale exacte). Le travail est exprimé en Joule (J).

1.3. Puissance instantanée

 \triangle C'est le travail fourni par la force \vec{F} , par unité de temps :

$$P(t) = \frac{dW}{dt} \qquad ou \qquad P(t) = \vec{F} \cdot \frac{d\vec{\ell}}{dt} = \vec{F} \cdot \vec{V}(t)$$

 $\vec{V}(t)$ est la vitesse de la particule

1.4. Puissance moyenne

La puissance moyenne entre les instants t_1 et t_2 est :

$$P_m = \frac{W}{t_2 - t_1}$$

La puissance est exprimée en Watt (W).

1.5. Cas particuliers

- Si \vec{F} est perpendiculaire au déplacement : W = 0

- Si F = cte : $W = \vec{F}\Delta\vec{r} = \vec{F}(\vec{r}_2 - \vec{r}_1)$

2. THEOREME DE L'ENERGIE CINETIQUE

Dans un repère galiléen, la résultante de forces appliquées s'écrit (P.F.D) :

$$\vec{F} = m\vec{\gamma} = m\frac{d\vec{V}}{dt}$$

Au cours d'un déplacement $d\vec{\ell} = \vec{V}dt$, le travail élémentaire est donné par :

$$dW = \vec{F}.d\vec{\ell} = m\frac{d\vec{V}}{dt}.\vec{V} dt = mV dV$$
$$= d(\frac{1}{2}mV^2) = dE_c$$

 $E_c = \frac{1}{2}mV^2$ est l'énergie cinétique de la particule à chaque instant t.

Le travail effectué entre les instants t_1 et t_2 sera :

$$W = \int_{t_1}^{t_2} dE_c \implies W = \Delta E_c = (E_c)_2 - (E_c)_1$$
 avec $W = \int \vec{F} \cdot d\vec{l}$

D'où le théorème :

 \triangle Le travail de la résultante des forces appliquées à une particule dans un référentiel galiléen, entre les instants t_1 et t_2 , est égal à la variation de l'énergie cinétique de la particule entre ces deux instants.

<u>Remarque</u>: Si le référentiel n'est pas galiléen, la résultante des forces doit inclure les forces d'inerties :

- Force d'inertie d'entraînement : $\vec{F}_e = -m\vec{\gamma}_e$
- Force d'inertie de Coriolis : $\vec{F}_c = -m\vec{\gamma}_c$

3. ENERGIE POTENTIELLE ET ENERGIE MECANIQUE

3.1. Cas des forces conservatives

Dans certains cas (champ de forces newtoniens de gravitation, champ électrique ...), le travail total effectué par la force \vec{F} , lorsque la particule se déplace de P_1 à P_2 , est <u>indépendant du trajet suivi</u>, donc indépendant de la courbe (C) qui relie P_1 et P_2 . Dans ce cas, on dit que la force \vec{F} est conservative ou \vec{F} dérive d'une énergie potentielle E_p définie par :

$$E_p = -\int \vec{F} \cdot d\vec{\ell} \qquad \vec{F} = - \overrightarrow{grad} E_p$$

Exemple: La force $\vec{F} = -k\vec{r}$ (ressort) dérive d'une énergie potentielle E_p :

$$E_{p} = -\int \vec{F} . d\vec{r} = -\int -k\vec{r} . d\vec{r}$$
$$= k \int r dr = \frac{1}{2} k r^{2} + C^{te}$$

L'énergie potentielle est donc définie à une constante près.

 \triangle Le travail effectué au cours du déplacement de P_1 à P_2 , est égal à la diminution de l'énergie potentielle :

$$W = E_{p_1} - E_{p_2}$$

3.2. Propriétés de forces conservatives

Les propriétés de forces conservatives sont les suivantes :

- Le travail ne dépend pas du chemin suivi
- Le travail est nul le long d'une courbe fermée

- La force conservative dérive d'une énergie potentielle telle que :

$$\overrightarrow{F} = -\overrightarrow{grad}E_p$$

- L'énergie mécanique $E = E_p + E_c$ de la particule , soumise à une force conservative, se conserve au cours du mouvement.

En effet:

$$W = \underbrace{E_{c_2} - E_{c_1}}_{\text{toujours valable}} = \underbrace{E_{p_1} - E_{p_2}}_{\text{valable dans le cas d'une force conservative}}$$

$$E_{p_1} + E_{c_1} = E_{p_2} + E_{c_2}$$

done

$$E_1 = E_2 = cte$$

Cette relation s'appelle intégrale de l'énergie.

3.3. Cas des forces non conservatives (ou dissipatives)

Dans ce cas, le travail total effectué dépend du chemin suivi (exemple : frottement).

Comme le théorème de l'énergie cinétique est valable dans tous les cas, on a :

$$W = W_d + W_c = \Delta E_c = E_{c_2} - E_{c_1}$$

 W_d : travail des forces dissipatives

 W_c : travail des force conservative

Donc
$$W_d = \Delta E_c - W_c$$
 avec $W_c = E_{p_1} - E_{p_2}$

D'où
$$W_d = E_{c_2} - E_{c_1} - (E_{p_1} - E_{p_2}) = (E_{c_2} + E_{p_2}) - (E_{c_1} + E_{p_1})$$

C'est-à-dire:

$$W_d = E_2 - E_1$$

La perte de l'énergie mécanique est mesurée par le travail des forces dissipatives.

4. CONDITIONS D'EQUILIBRE - STABILITE

Considérons un point matériel M en déplacement uniquement suivant l'axe Ox. Ce point est soumis à une force dérivant d'une énergie potentielle $E_p(x)$

(déplacement suivant l'axe Ox). Alors, cette particule est en équilibre lorsque son énergie potentielle est extrémale :

$$\frac{dE_p}{dx} = 0$$

En effet, à l'équilibre $\vec{F} = \vec{0}$; comme $\vec{F} = -\overline{grad} E_p = -\frac{dE_p}{dx} \vec{e}_x$, on a $\frac{dE_p}{dx} = 0$ L'équilibre est stable si E_p est minimale

$$\frac{dE_p}{dx} = 0 \quad et \quad \frac{d^2E}{dx^2} > 0$$

L'équilibre est instable si E_p est maximale

$$\frac{dE_p}{dx} = 0 \quad et \quad \frac{d^2 E_p}{dx^2} < 0$$

5. EXEMPLES D'APPLICATION

5.1. Exemple du calcul de l'énergie et du moment cinétique

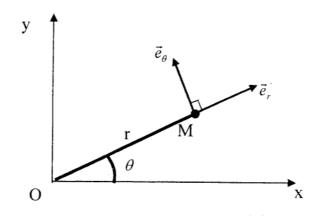
Une particule de masse m est en mouvement sous l'action de la force :

$$\vec{F}(r) = \frac{\alpha}{r^2} \vec{e_r}$$

 α étant une constante positive.

Calculer en coordonnées polaires (r,θ) :

- 1) L'énergie cinétique de la particule
- 2) L'énergie potentielle E_p
- 3) L'énergie mécanique (énergie totale) E
- 4) Le moment cinétique $\vec{\sigma}_0$ par rapport à l'origine.



Réponse:

1) Calcule de E_c

$$E_c = \frac{1}{2} mV^2$$

Or en coordonnées polaires \overrightarrow{V} est donnée par :

$$\vec{V} = \frac{d\overrightarrow{OM}}{dt} = \frac{d(r\overrightarrow{e_r})}{dt} = \dot{r}\overrightarrow{e_r} + r\dot{\theta} \ \overrightarrow{e_{\theta}}$$

Soit

$$E_c = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2)$$

2) Calcul de E_p : la particule est soumise à la force $\vec{F}(r) = \frac{\alpha}{r^2} \vec{e_r}$

On a done

$$E_p = -\int \overrightarrow{F} \cdot \overrightarrow{dl}$$

avec $\overrightarrow{dl} = d\overrightarrow{re_r} + rd\theta \overrightarrow{e_\theta}$: déplacement élémentaire en coordonnées polaires.

D'où

$$E_p = -\alpha \int \frac{dr}{r^2} = +\frac{\alpha}{r} + cte$$

En supposant $E_p = 0$ pour $r \to \infty$, on a:

$$cte = 0$$
 et $E_p = \frac{\alpha}{r}$

3) Calcul de E

$$E = E_c + E_p = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{\alpha}{r}$$

4) Calcul de $\overrightarrow{\sigma_0} = \overrightarrow{OM} \wedge m\overrightarrow{V}$

$$= r\overrightarrow{e_r} \wedge m(r\overrightarrow{e_r} + r\dot{\theta}\overrightarrow{e_\theta})$$

$$= mr\overrightarrow{r} \overrightarrow{e_r} \wedge \overrightarrow{e_r} + mr^2\dot{\theta} \overrightarrow{e_r} \wedge \overrightarrow{e_\theta}$$

or

$$\overrightarrow{e_r} \wedge \overrightarrow{e_r} = \overrightarrow{0}$$
 et $\overrightarrow{e_r} \wedge \overrightarrow{e_\theta} = \overrightarrow{e_z}$

d'où

$$\overrightarrow{\sigma_0} = mr^2 \overrightarrow{e}_z$$

5.2. Exemple du calcul de la position d'équilibre

Un point matériel de masse m, astreint à se déplacer sur un axe Ox, est soumis de la par du point O à une force :

$$\overline{F} = \left(-\frac{2}{x^2} + \frac{1}{x^3}\right) \overrightarrow{e_x}$$

Pour quelle valeur x_0 de x le point est-il en équilibre ?

Réponse:

Condition d'équilibre

Le point matériel n'est supposé soumis qu'à la force \overrightarrow{F} d'où la condition d'équilibre :

Avec
$$\overrightarrow{F} = \overrightarrow{0}$$

$$\overrightarrow{F} = -\overrightarrow{grad}E_p = -\frac{dE_p}{dx}\overrightarrow{e_x}$$
D'où $\left(-\frac{2}{x^2} + \frac{1}{x^3}\right)\overrightarrow{e_x} = 0$ ou encore $\frac{2}{x^2} = \frac{1}{x^3}$

Donc pour $x = x_0 = \frac{1}{2}$, le point matériel se trouve en équilibre.

Stabilité de l'équilibre :

$$\frac{dE_p}{dx} = \frac{2}{x^2} - \frac{1}{x^3} \implies \frac{d^2 E_p}{dx^2} = \frac{-4}{x^3} + \frac{3}{x^4} = \frac{1}{x^3} \left(\frac{3}{x} - 4\right)$$

$$\left(\frac{d^2 E_p}{dx^2}\right)_{x=\frac{1}{2}} = 8.(6-4) = 16 > 0$$

C'est-à-dire E_p est minimale ; d'où l'équilibre est stable.

Bon coura

LIENS UTILES

Visiter:

- I. https://biologie-maroc.com
 - Télécharger des cours, TD, TP et examens résolus (PDF Gratuit)
- 2. https://biologie-maroc.com/shop/
 - Acheter des cahiers personnalisés + Lexiques et notions.
 - Trouver des cadeaux et accessoires pour biologistes et géologues.
 - Trouver des bourses et des écoles privées
- 3. https://biologie-maroc.com/emploi/
- Télécharger des exemples des CV, lettres de motivation, demandes de ...
- Trouver des offres d'emploi et de stage

