

www.biologie-maroc.com

SCIENCES DE LA VIE

- + Lexique
- Accessoires de Biologie

Visiter Biologie Maroc pour étudier et passer des QUIZ et QCM enligne et Télécharger TD, TP et Examens résolus.

- CV · Lettres de motivation · Demandes...
- Offres d'emploi
- Offres de stage & PFE

Exemples de milieux de culture Et Etude de leur composition

Milieux de culture

Milieux de culture

- Préparation nutritive destinée à la croissance de microorganismes en laboratoire
- Peuvent être liquides ou solides
- Milieux synthétiques
- Milieux complexes

Milieu solide

- Milieu liquide auquel on ajoute un agent de solidification tel que l'agar-agar
- L'agar-agar est un polysaccharide extrait d'une algue marine.
- C'est un gel qui est à l'état solide à une T° de moins de 60°C et qui se liquéfie à 100°C.
- Permet donc l'incubation à des T° élevées.
- N'est pas une source nutritive pour les bactéries
- Permet d'obtenir des colonies isolées

Milieux synthétiques

- Milieu qui doit fournir une source d'énergie et des éléments tels que le carbone, l'azote, le soufre, le phosphore et des facteurs de croissance.
- La composition chimique de ce milieu est connue.

Milieux complexes

Aussi appelés milieux empiriques.

• Contiennent des ingrédients dont la composition chimique est indéterminée.

Ingrédients des milieux complexes

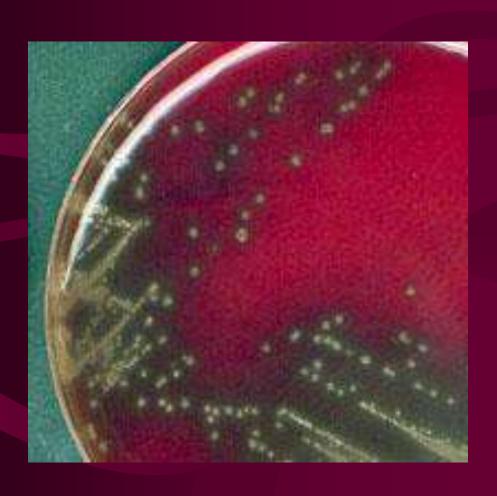
- Extrait de levure (source de vitamine B)
- Extrait de viande (vitamines et facteurs de croissance)
- Peptones (source d'azote)
- Sang (élément nutritif +observation des propriétés hémolytiques de certaines bactéries)
- NaCl: isotonie
- Phosphates: tampon
- Eau: hydratation du milieu.

Ingrédients (suite) Indicateurs de pH

- indiquent une activité enzymatique qui produit un métabolite acide ou alcalin

	рН	Acide	Alcalin
Rouge de phénol	6.8 à 8.3	jaune	rouge
Rouge de méthyl	4.2 à 6.3	rouge	jaune
Bromothymol bleu	6.0 à 7.6	jaune	bleu
Bromocrésol pourpre	5.6 à 6.8	jaune	pourpre

Milieux enrichis


- Contiennent des substances organiques complexes (sang, infusions, extraits de levure).
- Permettent la croissance des bactéries plus exigeantes.

Ex : gélose au sang

Gélose sang (composition)

- Infusion de cœur de bœuf
- Peptone
- NaCl
- Agar
- Sang défibriné de mouton ou de cheval en concentration de 5 à 10%
- Utilité: visualiser l'hémolyse


Types d'hémolyse

 Alpha (α) : hémolyse incomplète (partielle)

Zone verdâtre autour de la colonie

Types d'hémolyse

 Bêta (β) : hémolyse complète (complète)

 Zone transparente autour de la colonie

Types d'hémolyse

- Alpha prime (α') : double hémolyse
 - hémolyse α tout près de la colonie
 - hémolyse β qui entoure l'hémolyse α

Gamma (γ): absence d'hémolyse

Milieu sélectif

- Inhibe la croissance des bactéries indésirables et stimule celle des microbes recherchés
- Contiennent des agents inhibiteurs (Ab, sel, colorant)
 Ex : cristal violet et sels biliaires dans la gélose
 MacConkey

Milieu différentiel

• Facilite la distinction entre les colonies de la bactérie recherchée et les autres colonies présentes sur le même milieu.

Milieux sélectif-différentiel

• Possède les caractéristiques des milieux sélectifs et différentiels

Ex: MacConkey

mannitol salt

Gélose MacConkey composition

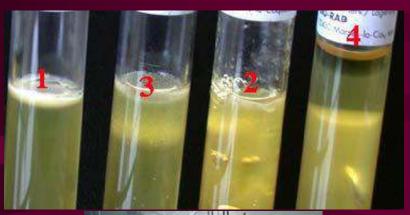
- Peptones
- Lactose (sucre): élément différentiel
- Sels biliaires et cristal violet : éléments sélectifs
- NaCl
- Agar
- Rouge neutre: indicateur de pH
- Utilité: isolement et distinction des bactéries Gram (-)

Gélose Mannitol salt Composition

- Extrait de boeuf
- Peptones
- NaCL 7.5% : élément sélectif
- Mannitol: élément différentiel
- Rouge de phénol: indicateur de pH
- Utilité: isolement des bactéries halophiles comme les Staphylocoques.

Milieux d'enrichissement

- Milieu liquide
- Donne des conditions favorables à la croissance d'un seul microbe donné ce qui en favorise la multiplication

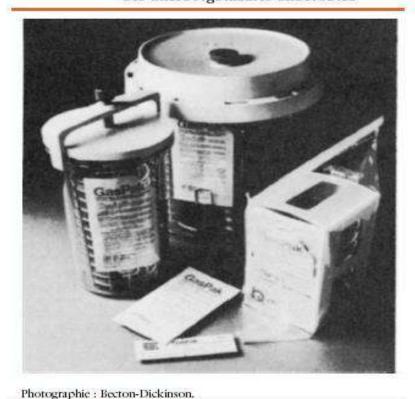

Ex : milieu sélénite utilisé dans les spécimens de selles pour favoriser la croissance des salmonelles et des shigelles au détriment des autres bactéries présentes.

Milieux de transport

- Utilisés pour assurer la survie des microorganismes fragiles présents dans les spécimens cliniques pendant leur transport
- Milieux pauvres en nutriments.

Ex: Stuart-Amies

Milieux et méthodes de culture des anaérobies


On doit utiliser un milieu réducteur tel que le thioglycolate de sodium.

• Lorsqu'on utilise une boîte de Petri, on utilise une jarre pour placer les bactéries en atmosphère anaérobie.

Jarre anaérobie

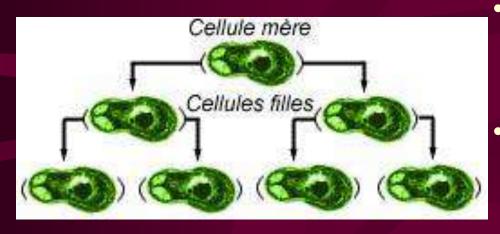
Figure 32.4 Procédés permettant la culture des microorganismes anaérobies

- 2 générateurs :
- borohydrure de sodium (H₂)
- bicarbonate de sodium (CO₂)
- Catalyseur : chlorure de palladium
- Indicateur : bleu de méthylène
- Composition finale de l'air ambiant : 10% H₂

5% CO₂

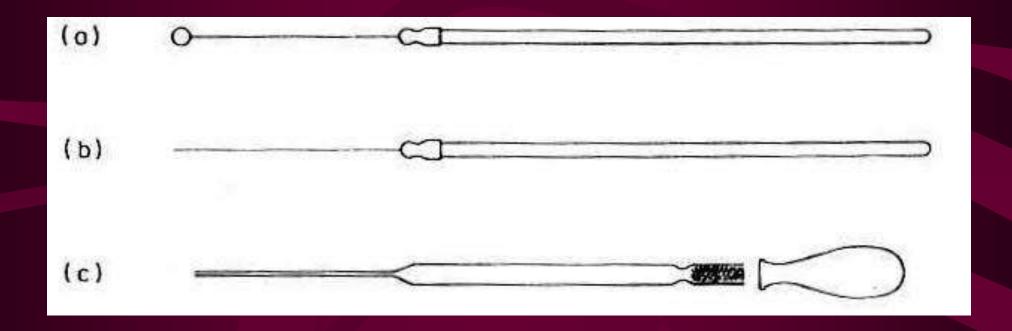
85% N₂

Méthode de culture en CO₂

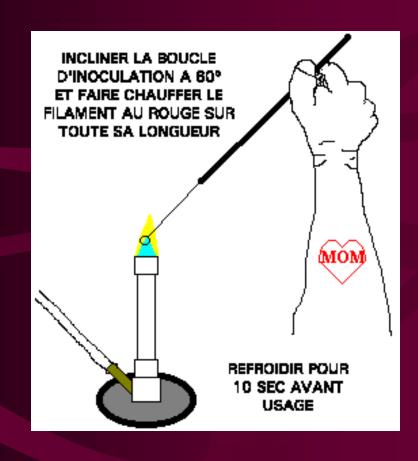

- Utilisée pour la culture des bactéries aérobies nécessitant une concentration de CO2 plus élevée que celle de l'atmosphère(bactéries capnophiles).
- On peut les cultiver soit en étuve, en jarre à chandelle ou par la méthode des sachets.
- Le but est d'obtenir des conditions semblables à celles du tube digestif ou du système respiratoire où se développent des bactéries pathogènes.

Méthode de culture en CO₂

- Jarre à chandelle : jarre étanche avec une chandelle allumée qui consume l'O₂.
- La chandelle s'éteint lorsqu'on atteint l'atmosphère CO₂.
- Méthode du sachet: acide citrique bicarbonate de sodium

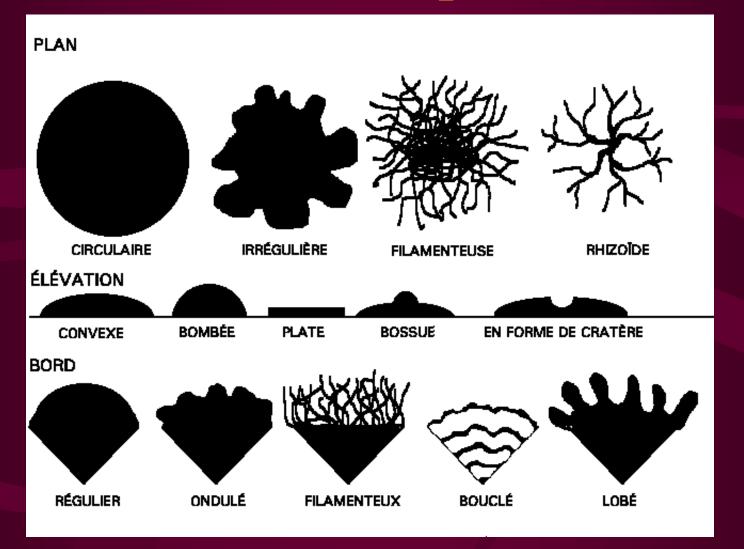

Concentration finale en CO₂: 10%

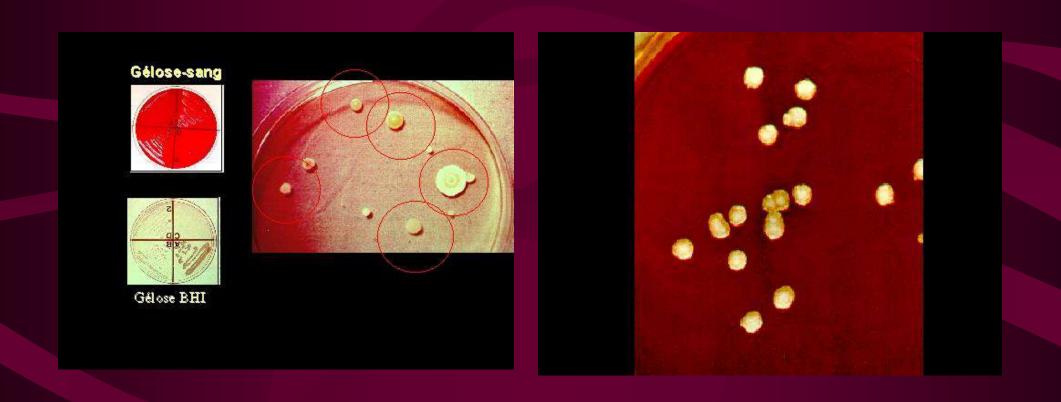
Préparation d'une culture pure



- But : obtention de colonies isolées
- Colonie: masse visible à l'œil nu de bactéries qui proviennent toutes d'une même cellule mère (clones)
- Technique la plus courante : méthode en stries

Outils du microbiologiste


Méthode des stries


Technique des stries

Aspect des colonies (macroscopie)

Aspect des colonies

II-La croissance des microorganismes

1 Définition de la Croissance

Généralement c'est l'accroissement de tous les composants d'un organisme.

Chez les organismes pluricellulaires, il y a augmentation de taille.

Chez les bactéries augmentation du nombre de cellules.

Cet accroissement est donc synonyme d'une multiplication bactérienne.

Chez Escherichia coli , toutes les 20 min environ, 1 bactérie donne naissance à 2 bactéries identiques

C'est l'augmentation coordonnée des différents constituants cellulaires mais c'est aussi la division de la cellule en deux cellules filles identiques. La croissance comprend en fait <u>croissance + reproduction</u>.

Il Croissance et cycle cellulaire

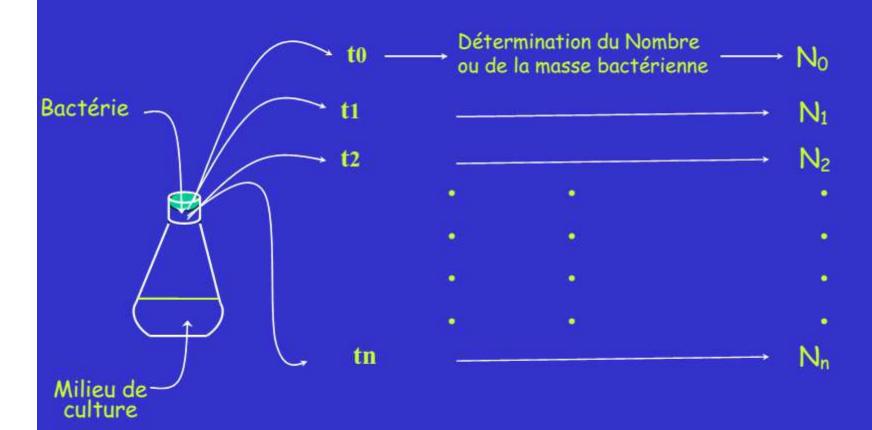
La croissance d'une bactérie implique la croissance coordonnée des constituants cellulaires. Ceci se fait dans un ordre précis déterminé.

Ex: Escherichia Coli

C'est le cycle cellulaire ou le cycle de division cellulaire. Il dure pendant le temps de génération ou le temps de doublement.

Ex : Pour E. Coli, le temps de génération est de 20 minutes.

A. Mesure de la croissance bactérienne

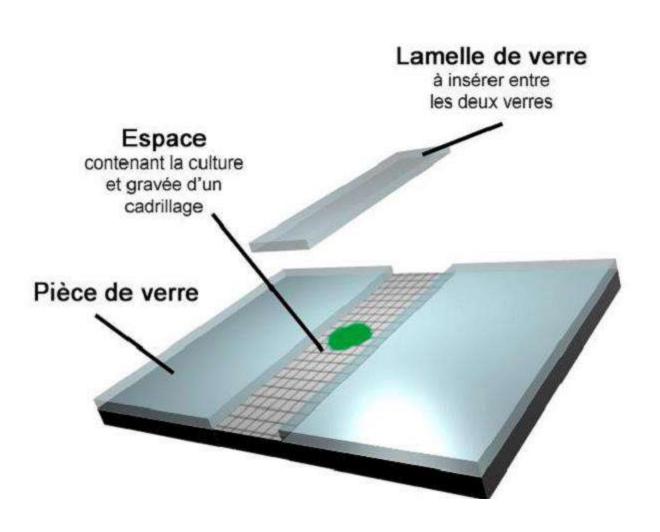

1) Dénombrement des cellules

La croissance est liée au nombre de cellules. On peut le déterminer par :

- q Comptage total
- q <u>Dénombrement des cellules viables</u> ou UFC (Unités Formant Vivant)
- Méthodes pour le comptage total :
 - Z Utilisation de la cellule de Thoma :
- → Injection d'un petit volume entre la lamelle et l'espace
- → Comptage au microscope du nombre de cellules par carreaux puis conversion en unité de volume.

2 Méthodes de mesure de la croissance

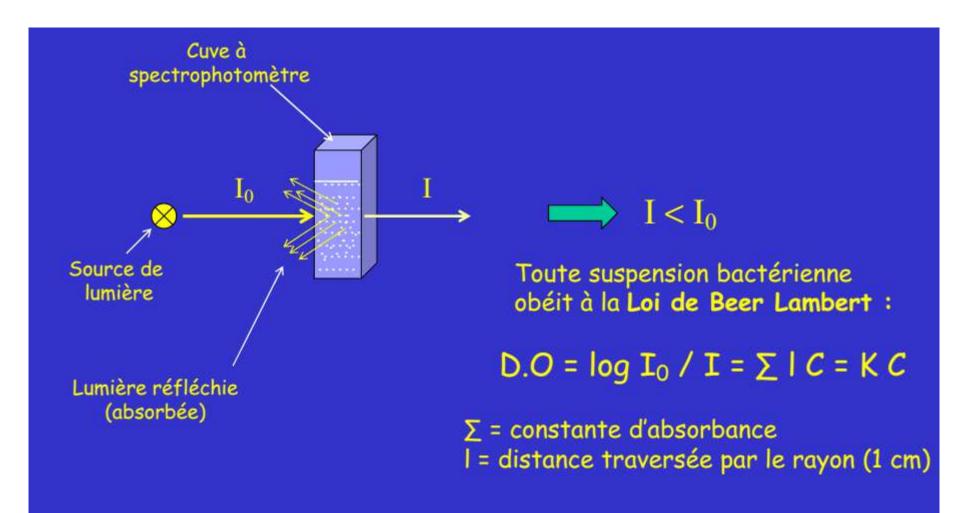
1- Principe


N.B. Durant la croissance la T°C et l'aération doivent être respectées

2-1. Mesure du nombre de cellules

- > Nombre de cellules totales
 - √ Cellule de Thomas
 - √ Dispositif électronique (Compteur Coulter)
- > Nombre de cellules viables
 - ✓ Sur milieu solide
 - √ Sur milieu liquide

2-2. Mesure de la masse


- Mesure du poids sec: (P. frais d'1 bact.= 1,5 10-12 g)
- Dosage de l'azote total (14% du poids sec).
- > La turbidimétrie: consiste à mesurer le trouble bactérien.

La turbidimétrie

Une suspension cellulaire, traversée par un rayon lumineux, disperse la lumière (absorbe) et la quantité transmise est réduite par rapport à la quantité émise.

Ceci est mesuré à l'aide d'un spectrophotomètre.

Σ et l'sont constantes, donc DO proportionnelle à C

La longueur d'onde utilisée pour la suspension bactérienne est comprise entre 550 et 660 nm (spectre d'absorbance).

30n Coura

LIENS UTILES

Visiter:

- I. https://biologie-maroc.com
 - Télécharger des cours, TD, TP et examens résolus (PDF Gratuit)
- 2. https://biologie-maroc.com/shop/
 - Acheter des cahiers personnalisés + Lexiques et notions.
 - Trouver des cadeaux et accessoires pour biologistes et géologues.
 - Trouver des bourses et des écoles privées
- 3. https://biologie-maroc.com/emploi/
- Télécharger des exemples des CV, lettres de motivation, demandes de ...
- Trouver des offres d'emploi et de stage

